Entanglement entropy, conformal invariance and extrinsic geometry

被引:242
|
作者
Solodukhin, Sergey N. [1 ]
机构
[1] Univ Tours, CNRS, UMR 6083, Lab Math & Phys Theor, F-37200 Tours, France
关键词
D O I
10.1016/j.physletb.2008.05.071
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the conformal invariance and the holographic correspondence to fully specify the dependence of entanglement entropy on the extrinsic geometry of the 2d surface Sigma that separates two subsystems of quantum strongly coupled N = 4SU(N) superconformal gauge theory. We extend this result and calculate entanglement entropy of a generic 4d conformal field theory. As a byproduct, we obtain a closed-form expression for the entanglement entropy in flat space-time when Sigma is sphere S-2 and when Sigma is two-dimensional cylinder. The contribution of the type A conformal anomaly to entanglement entropy is always determined by topology of surface Sigma while the dependence of the entropy on the extrinsic geometry of Sigma is due to the type B conformal anomaly. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 50 条
  • [31] Effects of non-conformal boundary on entanglement entropy
    Andrew Loveridge
    Journal of High Energy Physics, 2020
  • [32] Holographic entanglement entropy in boundary conformal field theory
    Chang, En-Jui
    Chou, Chia-Jui
    Yang, Yi
    PHYSICAL REVIEW D, 2018, 98 (10)
  • [33] Effects of non-conformal boundary on entanglement entropy
    Loveridge, Andrew
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [34] Conformal Bounds in Three Dimensions from Entanglement Entropy
    Bueno, Pablo
    Casini, Horacio
    Andino, Oscar Lasso
    Moreno, Javier
    PHYSICAL REVIEW LETTERS, 2023, 131 (17)
  • [35] Shape dependence of entanglement entropy in conformal field theories
    Faulkner, Thomas
    Leigh, Robert G.
    Parrikar, Onkar
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [36] GAUGE-INVARIANCE BASED ON THE EXTRINSIC GEOMETRY IN THE RIGID STRING
    ITOI, C
    KUBOTA, H
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1989, 44 (02): : 337 - 342
  • [37] Entanglement entropy and vacuum states in Schwarzschild geometry
    Yoshinori Matsuo
    Journal of High Energy Physics, 2022
  • [38] Entanglement entropy and vacuum states in Schwarzschild geometry
    Matsuo, Yoshinori
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [39] Bulk geometry from entanglement entropy of CFT
    Saha, Ashis
    Karar, Sourav
    Gangopadhyay, Sunandan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [40] Quantum geometry and entanglement entropy of a black hole
    Mullick, L.
    Bandyopadhyaya, P.
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (05) : 1199 - 1205