Nonlinear model structure identification using genetic programming

被引:87
|
作者
Gray, GJ
Murray-Smith, DJ [1 ]
Li, Y
Sharman, KC
Weinbrenner, T
机构
[1] Univ Glasgow, Ctr Syst & Control, Glasgow G12 8LT, Lanark, Scotland
[2] Univ Glasgow, Dept Elect & Elect Engn, Glasgow G12 8LT, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
genetic programming; genetic algorithms; nonlinear models; system identification; helicopter dynamics;
D O I
10.1016/S0967-0661(98)00087-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Genetic Programming is an optimisation procedure which may be applied to the identification of the nonlinear structure of a dynamic model from experimental data. In such applications, the model structure may be described either by differential equations or by a block diagram and the algorithm is configured to minimise the sum of the squares of the error between the recorded experimental response from the real system and the corresponding simulation model output. The technique has been applied successfully to the modelling of a laboratory scale process involving a coupled water tank system and to the identification of a helicopter rotor speed controller and engine from flight test data. The resulting models provide useful physical insight.: 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1341 / 1352
页数:12
相关论文
共 50 条
  • [41] Using genetic programming to discover nonlinear variable interactions
    Chris Westbury
    Lori Buchanan
    Michael Sanderson
    Mijke Rhemtulla
    Leah Phillips
    [J]. Behavior Research Methods, Instruments, & Computers, 2003, 35 : 202 - 216
  • [42] Estimating downstream scour of the grade-control structure using nonlinear regression and genetic programming
    Fattahi, Masoumeh
    Lashkar-Ara, Babak
    Valipour, Mahsa
    [J]. PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 3149 - 3156
  • [43] Genetic Programming based multichannel identification of nonlinear systems by Volterra filters
    Yao, Leehter
    Lin, Chin-Chin
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2849 - +
  • [44] Migration-Based Multiobjective Genetic Programming for Nonlinear System Identification
    Ferariu, L.
    Patelli, A.
    [J]. SACI: 2009 5TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS, 2009, : 465 - 470
  • [45] Identification of nonlinear systems by the genetic programming-based Volterra filter
    Yao, L.
    Lin, C. -C.
    [J]. IET SIGNAL PROCESSING, 2009, 3 (02) : 93 - 105
  • [46] Parameter identification of nonlinear constitutive model for conditioned soils by using genetic algorithm
    Shangguan, Zi-Chang
    Li, Shou-Ju
    Sun, Wei
    Luan, Mao-Tian
    Liu, Bo
    [J]. Meitan Xuebao/Journal of the China Coal Society, 2010, 35 (06): : 915 - 917
  • [47] A study on nonlinear model identification using Pseudo-Bacterial Genetic Algorithm
    Nawa, NE
    Furuhashi, T
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 408 - 411
  • [48] Identification of Linear Time-invariant, Nonlinear and Time Varying Dynamic Systems Using Genetic Programming
    Yuan, Xiao-lei
    Bai, Yan
    Dong, Ling
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 56 - 61
  • [49] Force identification of dynamic systems using genetic programming
    Yang, YW
    Wang, C
    Soh, CK
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 63 (09) : 1288 - 1312
  • [50] Identification of response surface models using genetic programming
    Lew, T. L.
    Spencer, A. B.
    Scarpa, F.
    Worden, K.
    Rutherford, A.
    Hemez, F.
    [J]. Proceedings of ISMA 2004: International Conference on Noise and Vibration Engineering, Vols 1-8, 2005, : 3287 - 3298