Empirical mode decomposition, fractional Gaussian noise and hurst exponent estimation

被引:0
|
作者
Rilling, G [1 ]
Flandrin, P [1 ]
Gonçalvès, P [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5672, Phys Lab, F-69364 Lyon, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Huang's data-driven technique of Empirical Mode Decomposition (EMD) is applied to the versatile, broadband, model of fractional Gaussian noise (fGn). The spectral analysis and statistical characterization of the obtained modes reveal an equivalent filter bank structure together with Gamma distributed variances, both sharing some properties with wavelet decompositions. These common features are then used to mimic wavelet based techniques aimed at estimating the Hurst exponent.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 50 条
  • [11] Bayesian Approach to Hurst Exponent Estimation
    Dlask, Martin
    Kukal, Jaromir
    Vysata, Oldrich
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 973 - 983
  • [12] Bayesian Approach to Hurst Exponent Estimation
    Martin Dlask
    Jaromir Kukal
    Oldrich Vysata
    Methodology and Computing in Applied Probability, 2017, 19 : 973 - 983
  • [13] Wavelets Comparison at Hurst Exponent Estimation
    Schurrer, Jaroslav
    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 757 - 761
  • [14] Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition
    Kang-Ming Chang
    Shing-Hong Liu
    Journal of Signal Processing Systems, 2011, 64 : 249 - 264
  • [15] Gaussian Noise Filtering from ECG by Wiener Filter and Ensemble Empirical Mode Decomposition
    Chang, Kang-Ming
    Liu, Shing-Hong
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 64 (02): : 249 - 264
  • [16] Entropy and alternative entropy functionals of fractional Gaussian noise as the functions of Hurst index
    Malyarenko, Anatoliy
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Shklyar, Sergiy
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (03) : 1052 - 1081
  • [17] Entropy and alternative entropy functionals of fractional Gaussian noise as the functions of Hurst index
    Anatoliy Malyarenko
    Yuliya Mishura
    Kostiantyn Ralchenko
    Sergiy Shklyar
    Fractional Calculus and Applied Analysis, 2023, 26 : 1052 - 1081
  • [18] Hurst exponent on the study of electrochemical noise measurements
    Sánchez-Amaya, JM
    Botana, FJ
    Bethencourt, M
    CORROSION, 2005, 61 (11) : 1050 - 1060
  • [19] Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles
    Coeurjolly, Jean-Francois
    ANNALS OF STATISTICS, 2008, 36 (03): : 1404 - 1434
  • [20] Method for Estimating the Hurst Exponent of Fractional Brownian Motion
    Savitskii, A. V.
    DOKLADY MATHEMATICS, 2019, 100 (03) : 564 - 567