Trajectory tracking control of quantum systems

被引:5
|
作者
Cong Shuang [1 ]
Liu JianXiu [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 18期
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
trajectory tracking; unitary transformation; free-evolutionary target system; regulation;
D O I
10.1007/s11434-012-5194-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For quantum state trajectory tracking of density matrix in Liouville equation of quantum systems, with the help of concept in quantum system control, one can apply unitary transformation both to controlled system and free-evolutionary target system such as to change the time-variant and non-stationary target system into a stationary state. Therefore, the quantum state trajectory tracking problem becomes a steering one. State steering control law of the system transformed is designed by means of the Lyapunov stability theorem. Finally, numerical simulation experiments are given for a five-level energy quantum system. The comparison analysis of original system's trajectory tracking with other method illustrates the advantage in control time of the method proposed.
引用
收藏
页码:2252 / 2258
页数:7
相关论文
共 50 条
  • [21] Trajectory tracking control of bimodal piecewise affine systems
    Sakurama, K
    Sugie, T
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (16) : 1314 - 1326
  • [22] Trajectory tracking control of chained systems: a new approach
    Dong, Wenjie
    Huo, Wei
    [J]. Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2000, 17 (04): : 583 - 588
  • [23] Trajectory planning for the tracking control of systems with unstable zeros
    Park, HS
    Chang, PH
    Lee, DY
    [J]. MECHATRONICS, 2003, 13 (02) : 127 - 139
  • [24] Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling
    Coron, Jean-Michel
    Grigoriu, Andreea
    Lefter, Catalin
    Turinici, Gabriel
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [25] Variational Principles for the Trajectory Tracking Control of Underactuated Mechanical Systems
    Bodor, Balint
    Bencsik, Laszlo
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (06):
  • [26] Identification and Trajectory Tracking Control of Nonlinear Singularly Perturbed Systems
    Zheng, Dong-Dong
    Xie, Wen-Fang
    Chai, Tianyou
    Fu, Zhijun
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 3737 - 3747
  • [27] Control of hybrid nanopositioning systems for trajectory-tracking applications
    Juhasz, Laszlo
    Maas, Juergen
    [J]. MECHATRONICS, 2013, 23 (06) : 617 - 629
  • [28] Optimum control of sampling systems through optimized trajectory tracking
    Nagy, E
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3897 - 3901
  • [29] Trajectory tracking and disturbance rejection control of random linear systems
    Wang, Shitong
    Wu, Zhaojing
    Wu, Zheng-Guang
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (09): : 4433 - 4448
  • [30] Nonlinear predictive control for trajectory tracking of underactuated mechanical systems
    Saidi, Imen
    Touati, Nahla
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (06): : 30 - 33