The function of a cyclic trigonal curve of genus three

被引:0
|
作者
Matsutani, Shigeki [1 ]
Previato, Emma [2 ]
机构
[1] Natl Inst Technol, Div Ind Math, Sasebo Coll, Nagasaki 8571193, Japan
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
HYPERELLIPTIC SOLUTIONS; ABELIAN FUNCTIONS; JACOBI INVERSION; FORMULAS; EQUATIONS; STRATA; SYSTEM; FLOWS; Y(R);
D O I
10.1007/s13348-015-0138-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A cyclic trigonal curve of genus three is a Galois cover of , therefore can be written as a smooth plane curve with equation . Following Weierstrass for the hyperelliptic case, we define an "" function for this curve and , , for each one of three particular covers of the Jacobian of the curve, and for a finite branchpoint . This generalization of the Jacobi , , functions satisfies the relation: Sigma(4)(r=1) Pi(2)(c=0) al(r)((c)) (u)/f'(b(r)) = 1 which generalizes . We also show that this can be viewed as a special case of the Frobenius theta identity.
引用
收藏
页码:311 / 349
页数:39
相关论文
共 50 条
  • [21] Genus 4 trigonal reduction of the Benney equations
    Baldwin, S
    Gibbons, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3607 - 3639
  • [22] The trigonal curve and the integration of the Hirota-Satsuma hierarchy
    He, G. L.
    Geng, X. G.
    Wu, L. H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 6581 - 6601
  • [23] Application of the trigonal curve to the Blaszak–Marciniak lattice hierarchy
    Xianguo Geng
    Xin Zeng
    Theoretical and Mathematical Physics, 2017, 190 : 18 - 42
  • [24] Application of the trigonal curve to a hierarchy of generalized Toda lattices
    Qiulan Zhao
    Caixue Li
    Xinyue Li
    Theoretical and Mathematical Physics, 2023, 215 : 495 - 519
  • [25] On threefolds admitting a trigonal curve as abstract complete intersection
    A. Del Centina
    A. Gimigliano
    Annali dell’Università di Ferrara, 2003, 49 (1): : 285 - 299
  • [26] Groups of automorphisms of cyclic trigonal Riemann surfaces
    Bujalance, E.
    Cirre, F. J.
    Gromadzki, G.
    JOURNAL OF ALGEBRA, 2009, 322 (04) : 1086 - 1103
  • [27] GENUS OF AN ALGEBRAIC CURVE
    KIRBY, D
    QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (47): : 217 - &
  • [28] ON A CURVE OF GENUS 7
    MACBEATH, AM
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1965, 15 : 527 - &
  • [29] On the genus of a maximal curve
    Korchmáros, G
    Torres, F
    MATHEMATISCHE ANNALEN, 2002, 323 (03) : 589 - 608
  • [30] On the genus of a maximal curve
    Gábor Korchmáros
    Fernando Torres
    Mathematische Annalen, 2002, 323 : 589 - 608