The function of a cyclic trigonal curve of genus three

被引:0
|
作者
Matsutani, Shigeki [1 ]
Previato, Emma [2 ]
机构
[1] Natl Inst Technol, Div Ind Math, Sasebo Coll, Nagasaki 8571193, Japan
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
关键词
HYPERELLIPTIC SOLUTIONS; ABELIAN FUNCTIONS; JACOBI INVERSION; FORMULAS; EQUATIONS; STRATA; SYSTEM; FLOWS; Y(R);
D O I
10.1007/s13348-015-0138-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A cyclic trigonal curve of genus three is a Galois cover of , therefore can be written as a smooth plane curve with equation . Following Weierstrass for the hyperelliptic case, we define an "" function for this curve and , , for each one of three particular covers of the Jacobian of the curve, and for a finite branchpoint . This generalization of the Jacobi , , functions satisfies the relation: Sigma(4)(r=1) Pi(2)(c=0) al(r)((c)) (u)/f'(b(r)) = 1 which generalizes . We also show that this can be viewed as a special case of the Frobenius theta identity.
引用
收藏
页码:311 / 349
页数:39
相关论文
共 50 条
  • [1] On the family of cyclic trigonal Riemann surfaces of genus 4 with several trigonal morphisms
    Costa, Antonio F.
    Izquierdo, Milagros
    Ying, Daniel
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2007, 101 (01) : 81 - 86
  • [2] The sigma function for trigonal cyclic curves
    Jiryo Komeda
    Shigeki Matsutani
    Emma Previato
    Letters in Mathematical Physics, 2019, 109 : 423 - 447
  • [3] The sigma function for trigonal cyclic curves
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (02) : 423 - 447
  • [4] Abelian functions for cyclic trigonal curves of genus 4
    Baldwin, S.
    Eilbeck, J. C.
    Gibbons, J.
    Onishi, Y.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (04) : 450 - 467
  • [5] Abelian Functions for Trigonal Curves of Genus Three
    Eilbeck, J. C.
    Enolski, V. Z.
    Matsutani, S.
    Onishi, Y.
    Previato, E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [6] Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
    England, Matthew
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [7] Gorenstein curve singularities of genus three
    Battistella L.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (3) : 655 - 680
  • [8] The coupled Sasa-Satsuma hierarchy: Trigonal curve and finite genus solutions
    Zhai, Yunyun
    Geng, Xianguo
    ANALYSIS AND APPLICATIONS, 2017, 15 (05) : 667 - 697
  • [9] EQUISYMMETRIC STRATA OF THE MODULI SPACE OF CYCLIC TRIGONAL RIEMANN SURFACES OF GENUS 4
    Izquierdo, Milagros
    Ying, Daniel
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51 : 19 - 29
  • [10] ON THE RIEMANN THETA FUNCTION OF A TRIGONAL CURVE AND SOLUTIONS OF THE BOUSSINESQ AND KP EQUATIONS
    MATVEEV, VB
    SMIRNOV, AO
    LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (01) : 25 - 31