Generalized heaps, inverse semigroups and Morita equivalence

被引:4
|
作者
Lawson, M. V. [1 ,2 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Inverse semigroup; Morita equivalence; generalized heaps;
D O I
10.1007/s00012-011-0162-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inverse semigroups are the algebraic counterparts of pseudogroups of transformations. The algebraic counterparts of atlases in differential geometry are what Wagner termed 'generalized heaps'. These are sets equipped with a ternary operation satisfying certain axioms. We prove that there is a bijective correspondence between generalized heaps and the equivalence bimodules, defined by Steinberg. Such equivalence bimodules are used to define the Morita equivalence of inverse semigroups. This paper therefore shows that the Morita equivalence of inverse semigroups is determined by Wagner's generalized heaps.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [41] A Note on Morita Equivalence Preserving Functor from the Category of Semigroups to the Category of Semirings
    Sardar, Sujit Kumar
    Chakraborty, Kaushik
    Gupta, Sugato
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (02) : 297 - 304
  • [42] Ideals in Morita Rings and Morita Semigroups
    Yu Qun CHEN Department of Mathematics.South China Normal University
    Acta Mathematica Sinica(English Series), 2005, 21 (04) : 893 - 898
  • [43] Ideals in Morita rings and Morita semigroups
    Chen, YQ
    Fan, Y
    Hao, ZF
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 893 - 898
  • [44] Ideals in Morita Rings and Morita Semigroups
    Yu Qun Chen
    Yun Fan
    Zhi Feng Hao
    Acta Mathematica Sinica, 2005, 21 : 893 - 898
  • [45] Generalized Weyl algebras: Category O and graded Morita equivalence
    Shipman, Ian
    JOURNAL OF ALGEBRA, 2010, 323 (09) : 2449 - 2468
  • [46] MORITA EQUIVALENCE
    Barrett, Thomas William
    Halvorson, Hans
    REVIEW OF SYMBOLIC LOGIC, 2016, 9 (03): : 556 - 582
  • [47] THE WEAK ASYMPTOTIC EQUIVALENCE AND THE GENERALIZED INVERSE
    Djurcic, D.
    Nikolic, R.
    Torgasev, A.
    LITHUANIAN MATHEMATICAL JOURNAL, 2010, 50 (01) : 34 - 42
  • [48] The strong asymptotic equivalence and the generalized inverse
    Djurcic, D.
    Torgasev, A.
    Jesic, S.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (04) : 628 - 636
  • [49] The strong asymptotic equivalence and the generalized inverse
    D. Djurčić
    A. Torgašev
    S. Ješić
    Siberian Mathematical Journal, 2008, 49 : 628 - 636
  • [50] The weak asymptotic equivalence and the generalized inverse
    D. Djurčić
    R. Nikolić
    A. Torgašev
    Lithuanian Mathematical Journal, 2010, 50 : 34 - 42