Clustering Methods for Ordinal Data: A Comparison Between Standard and New Approaches

被引:2
|
作者
Ranalli, Monia [1 ]
Rocci, Roberto [2 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Roma Tor Vergata, Dipartimento IGF, Rome, Italy
关键词
EM algorithm; Finite mixture models; k-means; Ordinal data; Pairwise likelihood; MODEL;
D O I
10.1007/978-3-319-17377-1_23
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The literature on cluster analysis has a long and rich history in several different fields. In this paper, we provide an overview of the more well-known clustering methods frequently used to analyse ordinal data. We summarize and compare their main features discussing some key issues. Finally, an example of application to real data is illustrated comparing and discussing clustering performances of different methods.
引用
下载
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [21] A Comparison of Clustering and Missing Data Methods for Health Sciences
    Zhao, R.
    Needell, D.
    Johansen, C.
    Grenard, J. L.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 1041 - 1045
  • [22] Comparison of Different Estimation Methods for Categorical and Ordinal Data in Confirmatory Factor Analysis
    Kogar, Hakan
    Yilmaz Kogar, Esin
    JOURNAL OF MEASUREMENT AND EVALUATION IN EDUCATION AND PSYCHOLOGY-EPOD, 2015, 6 (02): : 351 - 364
  • [23] Performance Comparison of Social Spider Optimization for Data Clustering with Other Clustering Methods
    Chandran, T. Ravi
    Reddy, A. V.
    Janet, B.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1119 - 1125
  • [24] An Ordinal Data Clustering Algorithm with Automated Distance Learning
    Zhang, Yiqun
    Cheung, Yiu-ming
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6869 - 6876
  • [25] COMPARISON OF STANDARD PARAMETRIC SURVIVAL METHODS VERSUS MORE FLEXIBLE APPROACHES
    van Oostrum, I
    Postma, M. J.
    Buskens, E.
    Heeg, B. M.
    VALUE IN HEALTH, 2017, 20 (09) : A750 - A750
  • [26] Standard essential patents - a comparison of approaches between East and West
    Choi, Yo Sop
    Heinemann, Andreas
    QUEEN MARY JOURNAL OF INTELLECTUAL PROPERTY, 2018, 8 (04) : 313 - 332
  • [27] New clustering methods for population comparison on paternal lineages
    Z. Juhász
    T. Fehér
    G. Bárány
    A. Zalán
    E. Németh
    Z. Pádár
    H. Pamjav
    Molecular Genetics and Genomics, 2015, 290 : 767 - 784
  • [28] New clustering methods for population comparison on paternal lineages
    Juhasz, Z.
    Feher, T.
    Barany, G.
    Zalan, A.
    Nemeth, E.
    Padar, Z.
    Pamjav, H.
    MOLECULAR GENETICS AND GENOMICS, 2015, 290 (02) : 767 - 784
  • [30] A comparison of four clustering methods for brain expression microarray data
    Richards, Alexander L.
    Holmans, Peter
    O'Donovan, Michael C.
    Owen, Michael J.
    Jones, Lesley
    BMC BIOINFORMATICS, 2008, 9 (1)