Clustering Methods for Ordinal Data: A Comparison Between Standard and New Approaches

被引:2
|
作者
Ranalli, Monia [1 ]
Rocci, Roberto [2 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Univ Roma Tor Vergata, Dipartimento IGF, Rome, Italy
关键词
EM algorithm; Finite mixture models; k-means; Ordinal data; Pairwise likelihood; MODEL;
D O I
10.1007/978-3-319-17377-1_23
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The literature on cluster analysis has a long and rich history in several different fields. In this paper, we provide an overview of the more well-known clustering methods frequently used to analyse ordinal data. We summarize and compare their main features discussing some key issues. Finally, an example of application to real data is illustrated comparing and discussing clustering performances of different methods.
引用
下载
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [1] Comparison of alternative imputation methods for ordinal data
    Cugnata, Federica
    Salini, Silvia
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 315 - 330
  • [2] COMPARISON OF DIMENSIONALITY REDUCTION METHODS APPLIED TO ORDINAL DATA
    Prokop, Martin
    Rezankova, Hana
    7TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2013, : 1150 - 1159
  • [3] Longitudinal quality of life data: a comparison of continuous and ordinal approaches
    A. F. Donneau
    M. Mauer
    C. Coens
    A. Bottomley
    A. Albert
    Quality of Life Research, 2014, 23 : 2873 - 2881
  • [4] Longitudinal quality of life data: a comparison of continuous and ordinal approaches
    Donneau, A. F.
    Mauer, M.
    Coens, C.
    Bottomley, A.
    Albert, A.
    QUALITY OF LIFE RESEARCH, 2014, 23 (10) : 2873 - 2881
  • [5] On Comparison of Clustering Methods for Pharmacoepidemiological Data
    Feuillet, Fanny
    Bellanger, Lise
    Hardouin, Jean-Benoit
    Victorri-Vigneau, Caroline
    Sebille, Veronique
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2015, 25 (04) : 843 - 856
  • [6] Comparison of Clustering Approaches for Gene Expression Data
    Borg, Anton
    Lavesson, Niklas
    Boeva, Veselka
    TWELFTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2013), 2013, 257 : 55 - 64
  • [7] A Clustering Method for Categorical Ordinal Data
    Giordan, Marco
    Diana, Giancarlo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (07) : 1315 - 1334
  • [8] New clustering methods for interval data
    Marie Chavent
    Francisco de A. T. de Carvalho
    Yves Lechevallier
    Rosanna Verde
    Computational Statistics, 2006, 21 : 211 - 229
  • [9] New clustering methods for interval data
    Chavent, Marie
    de Carvalho, Francisco de A. T.
    Lechevallier, Yves
    Verde, Rosanna
    COMPUTATIONAL STATISTICS, 2006, 21 (02) : 211 - 229
  • [10] A Comparison of Categorical Attribute Data Clustering Methods
    Hautamaki, Ville
    Pollanen, Antti
    Kinnunen, Tomi
    Lee, Kong Aik
    Li, Haizhou
    Franti, Pasi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 53 - 62