2D Ruddlesden-Popper Perovskites for Optoelectronics

被引:676
|
作者
Chen, Yani [1 ]
Sun, Yong [1 ]
Peng, Jiajun [1 ]
Tang, Junhui [1 ]
Zheng, Kaibo [2 ,3 ]
Liang, Ziqi [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Lund Univ, Dept Chem Phys & NanoLund, Box 124, S-22100 Lund, Sweden
[3] Qatar Univ, Coll Engn, Gas Proc Ctr, POB 2713, Doha, Qatar
基金
瑞典研究理事会;
关键词
2D perovskites; charge transport; molecular structures; optoelectronics; Ruddlesden-Popper; LIGHT-EMITTING-DIODES; ORGANOMETAL HALIDE PEROVSKITES; ORGANIC-INORGANIC PEROVSKITES; LEAD-IODIDE PEROVSKITES; SOLAR-CELLS; HYBRID PEROVSKITES; HOMOLOGOUS PEROVSKITES; EFFICIENT; PERFORMANCE; STABILITY;
D O I
10.1002/adma.201703487
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto) electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [21] Self-powered photodetectors based on Ruddlesden-Popper 2D hybrid perovskites with carbazole derivatives
    Alphenaar, Anna Niamh
    Zhang, Xiaoyu
    Xu, Yuanze
    Ramakrishnan, Shripathi
    Zhang, Yugang
    Yu, Qiuming
    APPLIED PHYSICS LETTERS, 2023, 123 (25)
  • [22] Dion-Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells
    Fu, Ping
    Liu, Yang
    Yu, Shuwen
    Yin, Heng
    Yang, Bowen
    Ahmad, Sajjad
    Guo, Xin
    Li, Can
    NANO ENERGY, 2021, 88
  • [23] Layer number dependent ferroelasticity in 2D Ruddlesden-Popper organic-inorganic hybrid perovskites
    Xiao, Xun
    Zhou, Jian
    Song, Kepeng
    Zhao, Jingjing
    Zhou, Yu
    Rudd, Peter Neil
    Han, Yu
    Li, Ju
    Huang, Jinsong
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [24] Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden-Popper halide perovskites
    Lu, Junlin
    Chen, Weijian
    Zhou, Chunhua
    Yang, Shuang
    Wang, Chong
    Wang, Rongfei
    Wang, Xin
    Gan, Zhixing
    Jia, Baohua
    Wen, Xiaoming
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (28) : 8966 - 8974
  • [25] Dion-Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells
    Fu, Ping
    Liu, Yang
    Yu, Shuwen
    Yin, Heng
    Yang, Bowen
    Ahmad, Sajjad
    Guo, Xin
    Li, Can
    Nano Energy, 2021, 88
  • [26] Tunable Ferroelectricity in Ruddlesden-Popper Halide Perovskites
    Zhang, Qiannan
    Solanki, Ankur
    Parida, Kaushik
    Giovanni, David
    Li, Mingjie
    Jansen, Thomas L. C.
    Pshenichnikov, Maxim S.
    Sum, Tze Chien
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (14) : 13523 - 13532
  • [27] Topochemical manipulation of ruddlesden-popper layered perovskites
    Gustin, Lea
    Lepoix, Carole
    Montasserasadi, Dariush
    Wiley, John B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [28] Revealing the Transient Formation Dynamics and Optoelectronic Properties of 2D Ruddlesden-Popper Phases on 3D Perovskites
    Kodalle, Tim
    Moral, Raphael F.
    Scalon, Lucas
    Szostak, Rodrigo
    Abdelsamie, Maged
    Marchezi, Paulo E.
    Nogueira, Ana F.
    Sutter-Fella, Carolin M.
    ADVANCED ENERGY MATERIALS, 2023, 13 (33)
  • [29] Detection range extended 2D Ruddlesden-Popper perovskite photodetectors
    Pan, Yiyi
    Wang, Haoliang
    Li, Xiaoguo
    Zhang, Xin
    Liu, Fengcai
    Peng, Meng
    Shi, Zejiao
    Li, Chongyuan
    Zhang, Haijuan
    Weng, Zhenhua
    Gusain, Meenakshi
    Long, Huabao
    Li, Dapeng
    Wang, Jiao
    Zhan, Yiqiang
    Zheng, Lirong
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (10) : 3359 - 3366
  • [30] Quantum Confinement Breaking: Orbital Coupling in 2D Ruddlesden-Popper Perovskites Enables Efficient Solar Cells
    Dong, Xiyue
    Chen, Mingqian
    Wang, Rui
    Ling, Qin
    Hu, Ziyang
    Liu, Hang
    Xin, Yufei
    Yang, Yang
    Wang, Jian
    Liu, Yongsheng
    ADVANCED ENERGY MATERIALS, 2023, 13 (29)