A Quasi-polynomial Time Approximation Scheme for Euclidean CVRPTW

被引:1
|
作者
Song, Liang [1 ,2 ]
Huang, Hejiao [1 ,2 ]
Du, Hongwei [1 ,2 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen, Peoples R China
[2] Shenzhen Key Lab Internet Informat Collaborat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Modern logistics; CVRPTW; Approximation algorithm; VEHICLE-ROUTING PROBLEM; SCHEDULING PROBLEM; HANDLING TIMES;
D O I
10.1007/978-3-319-12691-3_6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The capacitated vehicle routing problem with time windows (CVRPTW) is a variant of the classical vehicle routing problem. In a category of CVRPTW, each customer has same unit-demand and must be served within a time window from a finite set of consecutive time windows. This paper gives a quasi-polynomial time approximation scheme (Q-PTAS) for this category of CVRPTW under the Euclidean setting. With a reasonable vehicle speed requirement, our algorithm could generate a set of routes of the length of (1 + O(epsilon)) OPT on expectation.
引用
收藏
页码:66 / 73
页数:8
相关论文
共 50 条
  • [21] Quasi-polynomial time approximation schemes for assortment optimization under Mallows-based rankings
    Rieger, Alon
    Segev, Danny
    MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 111 - 171
  • [22] Quasi-polynomial Time Approximation of Output Probabilities of Geometrically-local, Shallow Quantum Circuits
    Coble, Nolan J.
    Coudron, Matthew
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 598 - 609
  • [23] Polynomial-time approximation scheme for a Euclidean problem on a cycle covering of a graph
    Khachai, M. Yu.
    Neznakhina, E. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (04): : 297 - 311
  • [24] A polynomial time approximation scheme for Euclidean minimum cost k-connectivity
    Czumaj, A
    Lingas, A
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1998, 1443 : 682 - 694
  • [25] A polynomial-time approximation scheme for the Euclidean problem on a cycle cover of a graph
    M. Yu. Khachai
    E. D. Neznakhina
    Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 111 - 125
  • [26] A Polynomial-Time Approximation Scheme for the Euclidean Problem on a Cycle Cover of a Graph
    Khachai, M. Yu.
    Neznakhina, E. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 : S111 - S125
  • [27] Improvement and implementation of a polynomial time approximation scheme for euclidean traveling salesman problem
    School of Computer Science and Technology, Shandong University, Jinan 250061, China
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2007, 44 (10): : 1790 - 1795
  • [28] Necessary conditions for the existence of quasi-polynomial invariants: the quasi-polynomial and Lotka-Volterra systems
    Figueiredo, A
    Rocha, TM
    Brenig, L
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 262 (1-2) : 158 - 180
  • [29] Composition of quasi-polynomial maps
    Niboucha, Razika
    Salinier, Alain
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (02): : 569 - 601
  • [30] A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor
    Levi, Reut
    Ron, Dana
    ACM TRANSACTIONS ON ALGORITHMS, 2015, 11 (03)