Temperature distribution analysis of parabolic trough solar collector using CFD

被引:9
|
作者
Marrakchi, Salma [1 ]
Leemrani, Zouhir [1 ]
Asselman, Hassan [1 ]
Aoukili, Abdeslam [2 ]
Asselman, Adel [1 ]
机构
[1] Abdelmalek Essaadi Univ, FS Tetouan, Lab Opt & Photon, BP2121, Tetouan 93030, Morocco
[2] Abdelmalek Essaadi Univ, FS Tetouan, Lab Commun & Detect Syst, BP2121, Tetouan 93030, Morocco
关键词
Parabolic trough collector; solar energy; computational fluid dynamics; renewable energy; heat transfer;
D O I
10.1016/j.promfg.2018.03.110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
At present, industrial growth and its environmental impact show that solar energy for solar thermal power plants is the fastest growing environment-friendly form of energy sources for covering a variety of energy needs. The most common solar power plants available on the market use parabolic trough collectors (PTCs). For this, our study will target parabolic trough solar collectors due to the lack of precise studies necessary to find the three-dimensional distribution of the temperature of the absorber tube. The distribution of temperature is investigated by studying the effect of uniform solar heat flux on parabolic trough collector. The simulations are carried out using COMSOL Multiphysics 5.1 software. To analyze three-dimensional temperature distribution, the solar heat flux condition of 1000 W/m2 is used as input data. It is observed that the fluid and the cover temperatures rise progressively from 298K until getting a specific temperature equilibrium value of 318K. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:773 / 779
页数:7
相关论文
共 50 条
  • [21] Heat transfer enhancement of a parabolic trough solar collector using innovative receiver configurations combined with a hybrid nanofluid: CFD analysis
    Byiringiro, Justin
    Chaanaoui, Meriem
    Halimi, Mohammed
    RENEWABLE ENERGY, 2024, 233
  • [22] Parabolic Trough Solar Collector for Medium Temperature Applications: An Experimental Analysis of the Efficiency and Length Optimization by Using Inserts
    Elton, D. N.
    Arunachala, U. C.
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (06):
  • [23] Heat transfer analysis and modeling of a parabolic trough solar collector: an analysis
    de Oliveira Siqueira, Antonio Marcos
    Neves Gomes, Paulo Eduardo
    Torrezani, Larissa
    Lucas, Eliene Oliveira
    da Cruz Pereira, Geraldo Magela
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 401 - 410
  • [24] Experimental study and analysis of air heating system using a parabolic trough solar collector
    Nain, Sunil
    Parinam, Anuradha
    Kajal, Sanjay
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2018, 39 (02) : 143 - 146
  • [25] Optimization of parabolic trough solar collector system
    Odeh, SD
    Morrison, GL
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (04) : 259 - 271
  • [26] Design of Solar Parabolic Trough Collector by FEM
    Tao, Lei
    Ling, Xiang
    Zhu, Yuezhao
    DETC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATIONAL IN ENGINEERING CONFERENCE, VOL 3, PTS A AND B: 28TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2009, : 375 - 380
  • [27] Analysis and design consideration of solar steam generation plant using parabolic trough collector
    Bataineh, Khaled
    MECHANIKA, 2015, (05): : 384 - 392
  • [28] Heat loss modelling and analysis of parabolic trough solar collector using computational approach
    Bhuyan, Upasana
    Sahoo, Sudhansu S.
    Satapathy, Prasanta K.
    Parida, Pramod K.
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2019, 17 (01) : 24 - 37
  • [29] Optical simulation of a parabolic solar trough collector
    Grena, Roberto
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (01) : 19 - 36
  • [30] Dynamic performance of parabolic trough solar collector
    Jie, Ji
    Han Chongwei
    Wei, He
    Gang, Pei
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 750 - 754