SCOPS: Self-Supervised Co-Part Segmentation

被引:82
|
作者
Hung, Wei-Chih [1 ]
Jampani, Varun [2 ]
Liu, Sifei [2 ]
Molchanov, Pavlo [2 ]
Yang, Ming-Hsuan [1 ]
Kautz, Jan [2 ]
机构
[1] UC Merced, Merced, CA 95343 USA
[2] NVIDIA, Santa Clara, CA USA
关键词
D O I
10.1109/CVPR.2019.00096
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parts provide a good intermediate representation of objects that is robust with respect to the camera, pose and appearance variations. Existing works on part segmentation is dominated by supervised approaches that rely on large amounts of manual annotations and can not generalize to unseen object categories. We propose a self-supervised deep learning approach for part segmentation, where we devise several loss functions that aids in predicting part segments that are geometrically concentrated, robust to object variations and are also semantically consistent across different object instances. Extensive experiments on different types of image collections demonstrate that our approach can produce part segments that adhere to object boundaries and also more semantically consistent across object instances compared to existing self-supervised techniques.
引用
收藏
页码:869 / 878
页数:10
相关论文
共 50 条
  • [11] Self-Supervised Embodied Learning for Semantic Segmentation
    Wang, Juan
    Liu, Xinzhu
    Zhao, Dawei
    Dai, Bin
    Liu, Huaping
    2023 IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING, ICDL, 2023, : 383 - 390
  • [12] Self-supervised Amodal Video Object Segmentation
    Yao, Jian
    Hong, Yuxin
    Wang, Chiyu
    Xiao, Tianjun
    He, Tong
    Locatello, Francesco
    Wipf, David
    Fu, Yanwei
    Zhang, Zheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [13] Leveraging Self-supervised Denoising for Image Segmentation
    Prakash, Mangal
    Buchholz, Tim-Oliver
    Lalit, Manan
    Tomancak, Pavel
    Jug, Florian
    Krull, Alexander
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 428 - 432
  • [14] Evolved Part Masking for Self-Supervised Learning
    Feng, Zhanzhou
    Zhang, Shiliang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10386 - 10395
  • [15] Weakly supervised semantic segmentation via self-supervised destruction learning
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Zhou, Yu
    Ma, Lin
    Jiang, Jianmin
    NEUROCOMPUTING, 2023, 561
  • [16] Self-Supervised Difference Detection forWeakly-Supervised Semantic Segmentation
    Shimoda, Wataru
    Yanai, Keiji
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5207 - 5216
  • [17] Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
    Valada, Abhinav
    Mohan, Rohit
    Burgard, Wolfram
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (05) : 1239 - 1285
  • [18] Online self-supervised learning for dynamic object segmentation
    Guizilini, Vitor
    Ramos, Fabio
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (4-5): : 559 - 581
  • [19] SELF-SUPERVISED MRI TISSUE SEGMENTATION BY DISCRIMINATIVE CLUSTERING
    Goncalves, Nicolau
    Nikkila, Janne
    Vigario, Ricardo
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2014, 24 (01)
  • [20] Self-supervised Semantic Segmentation: Consistency over Transformation
    Karimijafarbigloo, Sanaz
    Azad, Reza
    Kazerouni, Amirhossein
    Velichko, Yury
    Bagci, Ulas
    Merhof, Dorit
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 2646 - 2655