AN EFFICIENT AND ROBUST NUMERICAL METHOD FOR OPTION PRICES IN A TWO-ASSET JUMP-DIFFUSION MODEL

被引:0
|
作者
Lee, Chaeyoung [1 ]
Wang, Jian [1 ]
Jang, Hanbyeol [2 ]
Han, Hyunsoo [2 ]
Lee, Seongjin [2 ]
Lee, Wonjin [2 ]
Yang, Kisung [3 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Korea Univ, Dept Financial Engn, Seoul 02841, South Korea
[3] Soongsil Univ, Sch Finance, Coll Business Adm, Seoul 06978, South Korea
关键词
jump-diffusion; Simpson's rule; non-uniform grid; implicit finite difference method; derivative securities;
D O I
10.7468/jksmeb.2020.27.4.231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an efficient and robust finite difference method for a two-asset jump diffusion model, which is a partial integro-differential equation (PIDE). To speed up a computational time, we compute a matrix so that we can calculate the non-local integral term fast by a simple matrix-vector operation. In addition, we use bilinear interpolation to solve integral term of PIDE. We can obtain more stable value by using the payoff-consistent extrapolation. We provide numerical experiments to demonstrate a performance of the proposed numerical method. The numerical results show the robustness and accuracy of the proposed method.
引用
收藏
页码:231 / 249
页数:19
相关论文
共 50 条
  • [41] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344
  • [42] Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes
    Zhu, Helin
    Ye, Fan
    Zhou, Enlu
    [J]. QUANTITATIVE FINANCE, 2015, 15 (11) : 1885 - 1900
  • [43] Probabilistic Inference of South African Equity Option Prices Under Jump-Diffusion Processes
    Mongwe, Wilson Tsakane
    Sidogi, Thendo
    Mbuvha, Rendani
    Marwala, Tshilidzi
    [J]. 2022 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING AND ECONOMICS (CIFER), 2022,
  • [44] Numerical Solution of a Two-asset Option Valuation PDE by ADI Finite Difference Discretization
    't Hout, Karel In
    Valkov, Radoslav
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [45] TRUE MARTINGALES FOR UPPER BOUNDS ON BERMUDAN OPTION PRICES UNDER JUMP-DIFFUSION PROCESSES
    Zhu, Helin
    Ye, Fan
    Zhou, Enlu
    [J]. 2013 WINTER SIMULATION CONFERENCE (WSC), 2013, : 113 - 124
  • [46] SPREAD OPTION PRICING USING TWO JUMP-DIFFUSION INTEREST RATES
    Mohamadinejad, R.
    Biazar, J.
    Neisy, A.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (01): : 171 - 182
  • [47] Asset pricing for an affine jump-diffusion model using an FD method of lines on nonuniform meshes
    Soleymani, Fazlollah
    Akgul, Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (02) : 578 - 591
  • [48] Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions
    Fu, Michael C.
    Li, Bingqing
    Li, Guozhen
    Wu, Rongwen
    [J]. MANAGEMENT SCIENCE, 2017, 63 (11) : 3961 - 3977
  • [49] Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method
    Zhang, Jin-Yu
    Wu, Wen-Bo
    Li, Yong
    Lou, Zhu-Sheng
    [J]. COMPUTATIONAL ECONOMICS, 2021, 58 (03) : 867 - 884
  • [50] Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method
    Jin-Yu Zhang
    Wen-Bo Wu
    Yong Li
    Zhu-Sheng Lou
    [J]. Computational Economics, 2021, 58 : 867 - 884