Existence of multidimensional shock waves. and phase boundaries

被引:5
|
作者
Zhang, Shu-Yi [1 ,2 ]
Wang, Ya-Guang [2 ]
机构
[1] Shanghai Inst Technol, Dept Math & Phys, Shanghai 200235, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
subsonic phase boundary; shock front; initial boundary value problem;
D O I
10.1016/j.jde.2008.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a kind of Riemann problem for the Euler equations in a van der Waals fluid is considered. We constructed the weak solution in multidimensional space which contains one shock front and one subsonic phase boundary. We mainly follow the arguments of Majda's [A. Majda, The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 275 (1983) 1-95; A. Majda, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 281 (1983) 1-93] and Metivier's [G. Metivier, Interaction de deux chocs pour un systeme de deux lois de conservation, en dimension deux d'espace, Trans. Amer. Math. Soc. 296 (1986) 431-479] work. The linear stability results are based on Majda's [A. Majda, The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 275 (1983) 1-95] work for the single shock front and Wang and Xin's [Y.-G. Wang, Z. Xin, Stability and existence of multidimensional subsonic phase transitions, Acta Math. Appl. Sin. 19 (2003) 529-558] work for the single phase boundary. The initial boundary value problem concerned in this paper is different from the boundary value problem for double shock fronts concerned in [G. Metivier, Interaction de deux chocs pour un systeme de deux lois de conservation, en dimension deux d'espace, Trans. Amer. Math. Soc. 296 (1986) 431-479], we slightly modified Metivier's frame work to establish the existence for the solution to the nonlinear problem. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1571 / 1602
页数:32
相关论文
共 50 条