An algorithm to compute the Teichmuller polynomial from matrices

被引:2
|
作者
Baik, Hyungryul [1 ]
Wu, Chenxi [2 ]
Kim, KyeongRo [1 ]
Jo, TaeHyouk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Dachak Ro, Daejeon 34141, South Korea
[2] Rutgers State Univ, Dept Math, Hill Ctr, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Teichmuller polynomial; Fibered cone; Alexander polynomial; Odd-block matrix; Traintrack; DILATATION; SURFACES; ENTROPY;
D O I
10.1007/s10711-019-00450-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In their precedent work, the authors constructed closed oriented hyperbolic surfaces with pseudo-Anosov homeomorphisms from certain class of integral matrices. In this paper, we present a very simple algorithm to compute the Teichmuller polynomial corresponding to those surface homeomorphisms by first constructing an invariant track whose first homology group can be naturally identified with the first homology group of the surface, and computing its Alexander polynomial.
引用
收藏
页码:175 / 189
页数:15
相关论文
共 50 条
  • [41] A polynomial time algorithm to compute the connected treewidth of a series-parallel graph
    Mescoff, Guillaume
    Paul, Christophe
    Thilikos, Dimitrios M.
    DISCRETE APPLIED MATHEMATICS, 2022, 312 : 72 - 85
  • [42] Polynomial XL: A Variant of the XL Algorithm Using Macaulay Matrices over Polynomial Rings
    Furue, Hiroki
    Kudo, Momonari
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2024, PT II, 2024, 14772 : 109 - 143
  • [43] An Algorithm to Compute Abelian Subalgebras in Linear Algebras of Upper-Triangular Matrices
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 53 - +
  • [44] Controlled precision QUBO-based algorithm to compute eigenvectors of symmetric matrices
    Krakoff, Benjamin
    Mniszewski, Susan M.
    Negre, Christian F. A.
    PLOS ONE, 2022, 17 (05):
  • [45] Controlled precision QUBO-based algorithm to compute eigenvectors of symmetric matrices
    Krakoff, Benjamin
    Mniszewski, Susan M.
    Negre, Christian F. A.
    PLOS PATHOGENS, 2022, 18 (05)
  • [46] A Revision of Extended Division Algorithm for Polynomial Matrices and its Application
    Kase, Wataru
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 109 - 113
  • [47] An Algorithm for Calculating the QR and Singular Value Decompositions of Polynomial Matrices
    Foster, Joanne A.
    McWhirter, John G.
    Davies, Martin R.
    Chambers, Jonathon A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1263 - 1274
  • [48] AN EXTENDED POLYNOMIAL GCD ALGORITHM USING HANKEL-MATRICES
    SENDRA, JR
    LLOVET, J
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 13 (01) : 25 - 39
  • [49] A Revision of Extended Division Algorithm for Polynomial Matrices and Its Applications
    Kase, Wataru
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2010, 93 (05) : 1 - 7
  • [50] Column Reduction of Polynomial Matrices; Some Remarks on the Algorithm of Wolovich
    Geurts, A. J.
    Praagman, C.
    EUROPEAN JOURNAL OF CONTROL, 1996, 2 (02) : 152 - 157