Gauge theories with graded differential Lie algebras

被引:2
|
作者
Wulkenhaar, R [1 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
关键词
D O I
10.1063/1.532685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a mathematical framework of gauge theories that is based upon a skew-adjoint Lie algebra and a generalized Dirac operator, both acting on a Hilbert space. (C) 1999 American Institute of Physics. [S0022-2488(99)02201-X].
引用
收藏
页码:787 / 794
页数:8
相关论文
共 50 条
  • [21] Graded Lie algebras and applications
    Iachello, F
    [J]. LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 85 - 104
  • [22] Graded identities for Lie algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    Silva, Diogo D. P.
    [J]. GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 181 - 188
  • [23] A radical for graded Lie algebras
    Ceretto, D.
    Garcia, E.
    Gomez Lozano, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 136 (1-2) : 16 - 29
  • [24] REPRESENTATIONS OF GRADED LIE ALGEBRAS
    ROSS, LE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) : 17 - &
  • [25] On the structure of graded Lie algebras
    Calderon Martin, Antonio J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [26] Differential graded Lie algebras controlling infinitesimal deformations of coherent sheaves
    Fiorenza, Domenico
    Iacono, Donatella
    Martinengo, Elena
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (02) : 521 - 540
  • [27] On a certain invariant of differential equations associated with nilpotent graded Lie algebras
    Noda, Takahiro
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2018, 47 (03) : 445 - 464
  • [28] Lie Algebras Attached to Clifford Modules and Simple Graded Lie Algebras
    Furutani, Kenro
    Godoy Molina, Mauricio
    Markina, Irina
    Morimoto, Tohru
    Vasil'ev, Alexander
    [J]. JOURNAL OF LIE THEORY, 2018, 28 (03) : 843 - 864
  • [29] Graded representations of graded Lie algebras and generalized representations of Jordan algebras
    Kantor, I
    Shpiz, G
    [J]. Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 167 - 174
  • [30] Graded simple Lie algebras and graded simple representations
    Mazorchuk, Volodymyr
    Zhao, Kaiming
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 156 (1-2) : 215 - 240