Gaussian Binomial Coefficients in Group Theory, Field Theory, and Topology

被引:0
|
作者
Chebolu, Sunil K. [1 ]
Lockridge, Keir [2 ]
机构
[1] Illinois State Univ, Algebra & Number Theory, Normal, IL 61761 USA
[2] Gettysburg Coll, Gettysburg, PA 17325 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2022年 / 129卷 / 05期
关键词
D O I
10.1080/00029890.2022.2040320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we offer group-theoretic, field-theoretic, and topological interpretations of the Gaussian binomial coefficients and their sum. For a finite p-group G of rank n. we show that the Gaussian binomial coefficient ((n)(k))(p) is the number of subgroups of G that are minimally expressible as an intersection of n - k maximal subgroups of G. and their sum is precisely the number of subgroups that are either G or an intersection of maximal subgroups of G. We provide a field-theoretic interpretation of these quantities through the lens of Galois theory and a topological interpretation involving covering spaces.
引用
收藏
页码:466 / 473
页数:8
相关论文
共 50 条
  • [31] Quadratic sums of Gaussian q-binomial coefficients and Fibonomial coefficients
    Wenchang Chu
    Emrah Kılıç
    The Ramanujan Journal, 2020, 51 : 229 - 243
  • [32] Topology of unitary groups and the prime orders of binomial coefficients
    Duan, HaiBao
    Lin, XianZu
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (09) : 1543 - 1548
  • [33] Topology of unitary groups and the prime orders of binomial coefficients
    DUAN HaiBao
    LIN XianZu
    Science China(Mathematics), 2017, 60 (09) : 1543 - 1548
  • [34] Topology of unitary groups and the prime orders of binomial coefficients
    HaiBao Duan
    XianZu Lin
    Science China Mathematics, 2017, 60 : 1543 - 1548
  • [35] Topology and Solutions in Cubic Superstring Field Theory
    Erler, Theodore
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (188): : 41 - 49
  • [36] VARIABLE TOPOLOGY MODELS IN FIELD-THEORY
    IVANENKO, DD
    SARDANASHVILY, GA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1979, 20 (03): : 71 - 74
  • [37] The Role of String Topology in Symplectic Field Theory
    Cieliebak, Kai
    Latschev, Janko
    NEW PERSPECTIVES AND CHALLENGES IN SYMPLECTIC FIELD THEORY, 2009, 49 : 113 - +
  • [38] Topological field theory interpretation of string topology
    Cattaneo, AS
    Fröhlich, J
    Pedrini, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (03) : 397 - 421
  • [39] Topological Field Theory Interpretation of String Topology
    Alberto S. Cattaneo
    Jürg Fröhlich
    Bill Pedrini
    Communications in Mathematical Physics, 2003, 240 : 397 - 421
  • [40] ON THE Q-LOG-CONCAVITY OF GAUSSIAN BINOMIAL COEFFICIENTS
    KRATTENTHALER, C
    MONATSHEFTE FUR MATHEMATIK, 1989, 107 (04): : 333 - 339