Gaussian Binomial Coefficients in Group Theory, Field Theory, and Topology

被引:0
|
作者
Chebolu, Sunil K. [1 ]
Lockridge, Keir [2 ]
机构
[1] Illinois State Univ, Algebra & Number Theory, Normal, IL 61761 USA
[2] Gettysburg Coll, Gettysburg, PA 17325 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2022年 / 129卷 / 05期
关键词
D O I
10.1080/00029890.2022.2040320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we offer group-theoretic, field-theoretic, and topological interpretations of the Gaussian binomial coefficients and their sum. For a finite p-group G of rank n. we show that the Gaussian binomial coefficient ((n)(k))(p) is the number of subgroups of G that are minimally expressible as an intersection of n - k maximal subgroups of G. and their sum is precisely the number of subgroups that are either G or an intersection of maximal subgroups of G. We provide a field-theoretic interpretation of these quantities through the lens of Galois theory and a topological interpretation involving covering spaces.
引用
收藏
页码:466 / 473
页数:8
相关论文
共 50 条