Multilayer graph contrastive clustering network

被引:26
|
作者
Liu, Liang [1 ,2 ]
Kang, Zhao [1 ,2 ]
Ruan, Jiajia [1 ]
He, Xixu [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Kashi Inst Elect & Informat Ind, Kashgar, Xinjiang, Peoples R China
关键词
Multiview graph; Multiple networks; Graph clustering; Self-supervised;
D O I
10.1016/j.ins.2022.09.042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multilayer graphs have received significant research attention in numerous areas beacause of their high utility in modeling interdependent systems. However, clustering of the mul-tilayer graph, in which multiple networks divide the graph nodes into categories or com-munities, is still at a nascent stage. Existing graph-clustering methods are often restricted to exploiting the multiview attributes or multiple networks and ignore more complex and richer network frameworks. Thus, we propose a generic and an effective autoencoder framework for multilayer graph-clustering called a multilayer graph con-trastive clustering network (MGCCN). The MGCCN consists of three modules: (1) attention mechanism that is applied to better capture the relevance between nodes and their neigh-bors for better node embeddings. (2) A contrastive fusion strategy that efficiently explores the consistent information in different networks. (3) A self-supervised component that iteratively strengthens the node embedding and clustering. Extensive experiments on dif-ferent types of real-world graph data indicate that our proposed method outperforms other state-of-the-art techniques. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 267
页数:12
相关论文
共 50 条
  • [21] SCGC : Self-supervised contrastive graph clustering
    Kulatilleke, Gayan K.
    Portmann, Marius
    Chandra, Shekhar S.
    NEUROCOMPUTING, 2025, 611
  • [22] Multi-level Graph Contrastive Prototypical Clustering
    Zhang, Yuchao
    Yuan, Yuan
    Wang, Qi
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4611 - 4619
  • [23] Contrastive Multiview Attribute Graph Clustering With Adaptive Encoders
    Chen, Man-Sheng
    Zhu, Xi-Ran
    Lin, Jia-Qi
    Wang, Chang-Dong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [24] Clustering Enhanced Multiplex Graph Contrastive Representation Learning
    Yuan, Ruiwen
    Tang, Yongqiang
    Wu, Yajing
    Zhang, Wensheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1341 - 1355
  • [25] CGC: Contrastive Graph Clustering for Community Detection and Tracking
    Park, Namyong
    Rossi, Ryan
    Koh, Eunyee
    Burhanuddin, Iftikhar Ahamath
    Kim, Sungchul
    Du, Fan
    Ahmed, Nesreen
    Faloutsos, Christos
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1115 - 1126
  • [26] Graph Debiased Contrastive Learning with Joint Representation Clustering
    Zhao, Han
    Yang, Xu
    Wang, Zhenru
    Yang, Erkun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 3434 - 3440
  • [27] Neighborhood contrastive representation learning for attributed graph clustering
    Wang, Tong
    Wu, Junhua
    Qi, Yaolei
    Qi, Xiaoming
    Guan, Juwei
    Zhang, Yuan
    Yang, Guanyu
    NEUROCOMPUTING, 2023, 562
  • [28] Graph Contrastive Partial Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Wen, Jie
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 (6551-6562) : 6551 - 6562
  • [29] Graph Clustering With Graph Capsule Network
    Zhang, Xianchao
    Mu, Jie
    Liu, Han
    Zhang, Xiaotong
    Zong, Linlin
    Wang, Guanglu
    NEURAL COMPUTATION, 2022, 34 (05) : 1256 - 1287
  • [30] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435