Prospective Accident-Tolerant Uranium-Molybdenum Metal Fuel

被引:0
|
作者
Karpyuk, L. A. [1 ]
Lysikov, A., V [1 ]
Maslov, A. A. [1 ]
Mikheev, E. N. [1 ]
Novikov, V. V. [1 ]
Orlov, V. K. [1 ]
Titov, A. O. [1 ]
机构
[1] Bochvar High Technol Res Inst Inorgan Mat VNIINM, Moscow, Russia
关键词
Pelletizing;
D O I
10.1007/s10512-021-00787-8
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Selection criteria based on density and uranium capacity are presented for fuel to be used in accident-tolerant fuel rods. The optimal composition of the uranium-molybdenum alloy is proposed based on studies and experience in working on the development of uranium alloys. Two technological schemes for producing fuel pellets are considered: melting and casting. The technology of forming pellets by the powder method is also considered. The results of a study of the physical and mechanical characteristics of cast and sintered fuel pellets in confirmation of their compliance with the specified criteria are presented.
引用
收藏
页码:156 / 160
页数:5
相关论文
共 50 条
  • [31] Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3 Si2) with increased uranium loading
    Ortega, Luis H.
    Blamer, Brandon J.
    Evans, Jordan A.
    McDeavitt, Sean M.
    JOURNAL OF NUCLEAR MATERIALS, 2016, 471 : 116 - 121
  • [32] Effect of Neutron Irradiation on Mechanical Properties of Accident-Tolerant Fuel FeCrAl Alloys
    Lei Y.
    Zhang H.
    Mao J.
    Liu X.
    Qiao Y.
    Wang P.
    Wu Y.
    Xiao W.
    Hedongli Gongcheng/Nuclear Power Engineering, 2022, 43 (01): : 97 - 101
  • [33] Neutronic and thermal-hydraulic coupling of FCM and helium annular fuel as accident-tolerant fuel
    du Toit, Maria Hendrina
    Mphofu, Aubrey
    Mashilangako, Ngoatladi
    NUCLEAR ENGINEERING AND DESIGN, 2024, 428
  • [34] Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam
    Pint, Bruce A.
    CORROSION REVIEWS, 2017, 35 (03) : 167 - 175
  • [35] Evaluation of the Possibility of Fabricating Uranium-Molybdenum Fuel for VVER by Powder Metallurgy Methods
    Lysikov, A. V.
    Mikheev, E. N.
    Karpyuk, L. A.
    Sivov, R. B.
    Bakhteev, O. A.
    Degtyarev, N. A.
    Missorin, D. S.
    ATOMIC ENERGY, 2020, 127 (05) : 324 - 327
  • [36] ELECTRON MICROSCOPY OF BARRIER COATINGS ON URANIUM-MOLYBDENUM FUEL IRRADIATED TO BURNUP 60%
    Golosov, O. A.
    Averin, S. A.
    Lyutikova, M. S.
    Shushlebin, V. V.
    Popov, V. V.
    Birzhevoi, G. A.
    ATOMIC ENERGY, 2017, 121 (04) : 276 - 282
  • [37] Electron Microscopy of Barrier Coatings on Uranium-Molybdenum Fuel Irradiated to Burnup 60%
    O. A. Golosov
    S. A. Averin
    M. S. Lyutikova
    V. V. Shushlebin
    V. V. Popov
    G. A. Birzhevoi
    Atomic Energy, 2017, 121 : 276 - 282
  • [38] Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel
    Meyer, MK
    Hofman, GL
    Hayes, SL
    Clark, CR
    Wiencek, TC
    Snelgrove, JL
    Strain, RV
    Kim, KH
    JOURNAL OF NUCLEAR MATERIALS, 2002, 304 (2-3) : 221 - 236
  • [39] Evaluation of the Possibility of Fabricating Uranium-Molybdenum Fuel for VVER by Powder Metallurgy Methods
    A. V. Lysikov
    E. N. Mikheev
    L. A. Karpyuk
    R. B. Sivov
    O. A. Bakhteev
    N. A. Degtyarev
    D. S. Missorin
    Atomic Energy, 2020, 127 : 324 - 327
  • [40] Thermodynamic studies on uranium-molybdenum alloys
    Parida, SC
    Dash, S
    Singh, Z
    Prasad, R
    Venugopal, V
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (03) : 585 - 597