A Hybrid Neural Network Model for Predicting Bottomhole Pressure in Managed Pressure Drilling

被引:9
|
作者
Zhu, Zhaopeng [1 ]
Song, Xianzhi [1 ,2 ]
Zhang, Rui [1 ]
Li, Gensheng [1 ,2 ]
Han, Liang [1 ]
Hu, Xiaoli [1 ]
Li, Dayu [1 ]
Yang, Donghan [1 ]
Qin, Furong [1 ]
机构
[1] China Univ Petr, Sch Petr Engn, Beijing 102249, Peoples R China
[2] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 13期
基金
美国国家科学基金会;
关键词
bottomhole pressure; temporal properties; hybrid neural networks; 2-PHASE FLOW; MECHANISTIC MODEL; MACHINE;
D O I
10.3390/app12136728
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Numerical and analytical study of rate effects on drilling forces under bottomhole pressure
    Amri, Mohamed
    Pelfrene, Gilles
    Jahangir, Emad
    Tijani, Michel
    Sellami, Hedi
    [J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2018, 110 : 189 - 198
  • [32] Bottomhole pressure stabilizing observer-based controller in tunnel drilling system
    Zoghlami, Naim
    Latrach, Khouloud
    Beji, Lotfi
    [J]. 3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [33] Investigation on the propagation characteristics of pressure wave during managed pressure drilling
    Hou, Yanan
    Li, Zhong
    Yin, Zhiming
    Fan, Baitao
    Ma, Yingwen
    Yang, Xiangqian
    Tian, Deqiang
    Cai, Wenjun
    Ren, Meipeng
    Zhang, Xingquan
    [J]. FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [34] A Hydraulic Model for Multiphase Flow Based on the Drift Flux Model in Managed Pressure Drilling
    Fang, Qiang
    Meng, Yingfeng
    Wei, Na
    Xu, Chaoyang
    Li, Gao
    [J]. ENERGIES, 2019, 12 (20)
  • [35] Bottomhole pressure control during drilling operations in gas-dominant wells
    Nygaard, Gerhard H.
    Vefring, Erlend H.
    Fjelde, Kjell-Kare
    Noevdal, Geir
    Lorentzen, Rolf Johan
    Mylvaganam, Saba
    [J]. SPE JOURNAL, 2007, 12 (01): : 49 - 61
  • [36] Model Order Reduction for Managed Pressure Drilling Systems based on a Model with Local Nonlinearities
    Lordejani, S. Naderi
    Besselink, B.
    Abbasi, M. H.
    Kaasa, G. -O.
    Schilders, W. H. A.
    van de Wouwt, N.
    [J]. IFAC PAPERSONLINE, 2018, 51 (08): : 50 - 55
  • [37] Predictive model for bottomhole pressure based on machine learning
    Spesivtsev, Pavel
    Sinkov, Konstantin
    Sofronov, Ivan
    Zimina, Anna
    Umnov, Alexey
    Yarullin, Ramil
    Vetrov, Dmitry
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 166 : 825 - 841
  • [38] Predicting the Pore-Pressure and Temperature of Fire-Loaded Concrete by a Hybrid Neural Network
    Zhang, Yiming
    Gao, Zhiran
    Wang, Xueya
    Liu, Qi
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)
  • [39] Reduced basis method for managed pressure drilling based on a model with local nonlinearities
    Abbasi, Mohammad Hossein
    Iapichino, Laura
    Lordejani, Sajad Naderi
    Schilders, Wil
    van de Wouw, Nathan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5178 - 5199
  • [40] Nonlinear model predictive control of gas kick in a managed pressure drilling system
    Sule, Idris
    Imtiaz, Syed
    Khan, Faisal
    Butt, Stephen
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 1223 - 1235