EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS

被引:5
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
Martinez, Salome [4 ,5 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Dept Matemat, Santiago 22, Chile
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[3] Univ La Laguna, Fac Fis, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, San Cristobal la Laguna 38203, Spain
[4] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[5] Univ Chile, CNRS UChile, UMI 2807, Ctr Modelamiento Matemat, Santiago 3, Chile
关键词
nonlocal; inhomogeneous; asymptotic; diffusion; dispersal; INTEGRODIFFERENTIAL EQUATIONS; MONOSTABLE NONLINEARITY; PHASE-TRANSITIONS; DIRICHLET PROBLEM; TRAVELING-WAVES; UNIQUENESS; DISPERSAL; MODEL; STABILITY; OPERATORS;
D O I
10.1137/090751682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlocal evolution Dirichlet problem u(t)(x, t) = f(Omega) J(x-y/g(y)) u(y, t)/g(y)(N) dy- u(x, t), x is an element of Omega, t > 0; u = 0, x is an element of R-N\Omega, t >= 0; u(x, 0) = u(0)(x), x is an element of R-N; where Omega is a bounded domain in R-N, J is a Holder continuous, nonnegative, compactly supported function with unit integral and g is an element of C((Omega) over bar) is assumed to be positive in Omega. We discuss existence, uniqueness, and asymptotic behavior of solutions as t -> |infinity. Moreover, we prove the existence of a positive stationary solution when the inequality g(x) <= delta(x) holds at every point of Omega, where delta(x) = dist(x, partial derivative Omega). The behavior of positive stationary solutions near the boundary is also analyzed.
引用
收藏
页码:2136 / 2164
页数:29
相关论文
共 50 条
  • [41] Existence of Solutions for Nonlocal Supercritical Elliptic Problems
    Abbas Moameni
    K. L. Wong
    The Journal of Geometric Analysis, 2021, 31 : 164 - 186
  • [42] Existence and nonexistence of solutions to nonlocal elliptic problems
    Bueno, Hamilton
    Pereira, Gilberto A.
    Silva, Edcarlos D.
    Ruviaro, Ricardo
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (01):
  • [43] Global existence and blow-up of solutions for a class of nonlocal problems with nonlinear diffusion
    Kavallaris, NI
    ADVANCES IN SCATTERING AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2004, : 305 - 312
  • [44] Global existence and blow-up of solutions of nonlocal diffusion problems with free boundaries?
    Li, Lei
    Wang, Mingxin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 58
  • [45] Asymptotic behavior of positive solutions of some quasilinear elliptic problems
    Guo, Zongming
    Ma, Li
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 419 - 437
  • [47] Asymptotic behavior for a class of nonlocal nonautonomous problems
    Bezerra, Flank D. M.
    da Silva, Severino H.
    Pereira, Antonio L.
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (11) : 2063 - 2079
  • [48] Existence and global behavior of positive solutions for some eigenvalue problems
    Zeddini, Noureddine
    Alsaedi, Ramzi S.
    Maagli, Habib
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 6
  • [49] Existence and global behavior of positive solutions for some eigenvalue problems
    Noureddine Zeddini
    Ramzi S Alsaedi
    Habib Mâagli
    Boundary Value Problems, 2015
  • [50] REPRESENTATION OF SOLUTIONS AND ASYMPTOTIC BEHAVIOR FOR NONLOCAL DIFFUSION EQUATIONS DESCRIBING TEMPERED LEVY FLIGHTS
    Pak, Song-Hui
    Jo, Kwang-Chol
    Sin, Chung-Sik
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (05) : 1473 - 1497