Deformation kinetics of a TRIP steel determined by in situ high-energy synchrotron X-ray diffraction

被引:7
|
作者
Barriobero-Vila, P. [1 ]
Jerez-Mesa, R. [2 ]
Guitar, A. [3 ]
Gavalda-Diaz, O. [4 ]
Travieso-Rodriguez, J. A. [2 ]
Stark, A. [5 ]
Schell, N. [5 ]
Lluma, J. [6 ]
Fargas, G. [7 ]
Mateo, A. [7 ]
Roa, J. J. [7 ]
机构
[1] German Aerosp Ctr DLR, Inst Mat Res, D-51147 Cologne, Germany
[2] Tech Univ Catalonia BarcelonaTech UPC, Barcelona East Sch Engn EEBE, Dept Mech Engn, Barcelona 08019, Spain
[3] Saarland Univ, Funct Mat, Dept Mat Sci & Engn, D-66123 Saarbrucken, Germany
[4] Imperial Coll London, Fac Engn, Dept Mat, London SW7 2AZ, England
[5] Helmholtz Zentrum Hereon, Max Planck Str 1, D-21502 Geesthacht, Germany
[6] Tech Univ Catalonia BarcelonaTech UPC, Barcelona East Sch Engn EEBE, Dept Mat Sci & Engn, Barcelona 08019, Spain
[7] Tech Univ Catalonia BarcelonaTech UPC, Ctr Res Struct Integr Reliabil & Micromech Mat CI, Barcelona East Sch Engn EEBE, Dept Mat Sci & Engn, Barcelona 08019, Spain
关键词
TRIP-aided steels; stainless steels; deformation kinetics; in situ high-energy synchrotron X-ray diffraction; INDUCED MARTENSITIC-TRANSFORMATION; AUSTENITIC STAINLESS-STEEL; PLASTIC-DEFORMATION; HIGH-STRENGTH; STRAIN; TEXTURE; EVOLUTION; DUCTILITY; BEHAVIOR; MICROSTRUCTURE;
D O I
10.1016/j.mtla.2021.101251
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructure design and the development of predictive approaches exploiting the transformation-induced plasticity (TRIP) effect require a keen understanding of the kinetics governing the strain-induced martensitic transformation. In this work, in situ high-energy synchrotron X-ray diffraction is applied to track the deformation kinetics of a commercial AISI 301LN metastable austenitic stainless steel in real-time. The kinetics obtained, providing the behaviour of the bulk material during room temperature tension up to a true strain of 0.3, unambiguously reveals the transformation sequence of epsilon and alpha' martensite which is discussed with respect to the evolution of texture and slip. These results are enhanced with microstructure analysis including electron backscattered diffraction and transmission Kikuchi diffraction. The insights provided shed light on the role of epsilon during alpha' transformation in metastable austenitic stainless steels and show that the latter is triggered by the general activation of slip.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] In situ X-ray diffraction measurements of deformation-induced Austenite to martensite transformation in a multiphase TRIP steel
    Zhao, L
    van der Pers, NM
    Sietsma, J
    van der Zwaag, S
    [J]. MICROALLOYING FOR NEW STEEL PROCESSES AND APPLICATIONS, 2005, 500-501 : 379 - 386
  • [32] An assessment of the contributing factors to the superior properties of a nanostructured steel using in situ high-energy X-ray diffraction
    Cheng, S.
    Wang, Y. D.
    Choo, H.
    Wang, X. -L.
    Almer, J. D.
    Liaw, P. K.
    Lee, Y. K.
    [J]. ACTA MATERIALIA, 2010, 58 (07) : 2419 - 2429
  • [33] Hydrogen embrittlement behaviors of additive manufactured maraging steel investigated by in situ high-energy X-ray diffraction
    Li, Shilei
    Liu, Mingming
    Ren, Yang
    Wang, Yandong
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 766
  • [34] Transformation of reverted austenite in a maraging steel under external loading: an in-situ X-ray diffraction study using high-energy synchrotron radiation
    Zickler, Gerald A.
    Schnitzer, Ronald
    Hochfellner, Rainer
    Lippmann, Thomas
    Zinner, Silvia
    Leitner, Harald
    [J]. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2009, 100 (11) : 1566 - 1573
  • [35] A synchrotron X-ray diffraction study on the phase transformation kinetics and texture evolution of a TRIP steel subjected to torsional loading
    Cakmak, Ercan
    Choo, Hahn
    An, Ke
    Ren, Yang
    [J]. ACTA MATERIALIA, 2012, 60 (19) : 6703 - 6713
  • [36] Predicting Fracture Toughness of TRIP 800 Using Phase Properties Characterized by In-Situ High-Energy X-Ray Diffraction
    Soulami, A.
    Choi, K. S.
    Liu, W. N.
    Sun, X.
    Khaleel, M. A.
    Ren, Y.
    Wang, Y. D.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (05): : 1261 - 1268
  • [37] Predicting Fracture Toughness of TRIP 800 Using Phase Properties Characterized by In-Situ High-Energy X-Ray Diffraction
    A. Soulami
    K.S. Choi
    W.N. Liu
    X. Sun
    M.A. Khaleel
    Y. Ren
    Y.D. Wang
    [J]. Metallurgical and Materials Transactions A, 2010, 41 : 1261 - 1268
  • [38] Focusing optics for high-energy X-ray diffraction
    Lienert, U
    Schulze, C
    Honkimaki, V
    Tschentscher, T
    Garbe, S
    Hignette, O
    Horsewell, A
    Lingham, M
    Poulsen, HF
    Thomsen, NB
    Ziegler, E
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 1998, 5 : 226 - 231
  • [39] Focusing optics for high-energy X-ray diffraction
    [J]. Journal of Synchrotron Radiation, 1998, 5 (03): : 226 - 231
  • [40] Tempering of a martensitic stainless steel: Investigation by in situ synchrotron X-ray diffraction
    Beneteau, Adeline
    Aeby-Gautier, Elisabeth
    Geandier, Guillaume
    Weisbecker, Patrick
    Redjaimia, Abdelkrim
    Appolaire, Benoit
    [J]. ACTA MATERIALIA, 2014, 81 : 30 - 40