Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI

被引:1
|
作者
Farsani, Zahra Amini [1 ,2 ]
Schmid, Volker J. [1 ]
机构
[1] Ludwig Maximilian Univ Munchen, Inst Stat, Bayesian Imaging & Spatial Stat Grp, Ludwigstr 33, D-80539 Munich, Germany
[2] Lorestan Univ, Sch Sci, Stat Dept, Khorramabad 6815144316, Iran
关键词
Maximum entropy technique; Arterial input function; Regularization Functional; Dynamic contrast-enhanced MRI; Gamma distribution; Pharmacokinetic parameters; ARTERIAL INPUT FUNCTION; BRAIN-BARRIER PERMEABILITY; CONTRAST AGENT UPTAKE; WIND-SPEED; KINETIC-PARAMETERS; MODELS; IMPACT; BLOOD; RECONSTRUCTION; OPTIMIZATION;
D O I
10.1007/s10278-022-00646-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This paper aims to solve the arterial input function (AIF) determination in dynamic contrast-enhanced MRI (DCE-MRI), an important linear ill-posed inverse problem, using the maximum entropy technique (MET) and regularization functionals. In addition, estimating the pharmacokinetic parameters from a DCE-MR image investigations is an urgent need to obtain the precise information about the AIF-the concentration of the contrast agent on the left ventricular blood pool measured over time. For this reason, the main idea is to show how to find a unique solution of linear system of equations generally in the form of y = Ax + b, named an ill-conditioned linear system of equations after discretization of the integral equations, which appear in different tomographic image restoration and reconstruction issues. Here, a new algorithm is described to estimate an appropriate probability distribution function for AIF according to the MET and regularization functionals for the contrast agent concentration when applying Bayesian estimation approach to estimate two different pharmacokinetic parameters. Moreover, by using the proposed approach when analyzing simulated and real datasets of the breast tumors according to pharmacokinetic factors, it indicates that using Bayesian inference-that infer the uncertainties of the computed solutions, and specific knowledge of the noise and errors-combined with the regularization functional of the maximum entropy problem, improved the convergence behavior and led to more consistent morphological and functional statistics and results. Finally, in comparison to the proposed exponential distribution based on MET and Newton's method, or Weibull distribution via the MET and teaching-learning-based optimization (MET/TLBO) in the previous studies, the family of Gamma and Erlang distributions estimated by the new algorithm are more appropriate and robust AIFs.
引用
收藏
页码:1176 / 1188
页数:13
相关论文
共 50 条
  • [1] Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI
    Zahra Amini Farsani
    Volker J Schmid
    [J]. Journal of Digital Imaging, 2022, 35 : 1176 - 1188
  • [2] The Influence of Temporal Resolution in Determining Pharmacokinetic Parameters From DCE-MRI Data
    Heisen, Marieke
    Fan, Xiaobing
    Buurman, Johannes
    van Riel, Natal A. W.
    Karczmar, Gregory S.
    Romeny, Bart M. ter Haar
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) : 811 - 816
  • [3] Enhancing the Convex Analysis of Mixtures Technique for Estimating DCE-MRI Pharmacokinetic Parameters
    Ibrahim, Ibrahim Mohamed
    Yu, Guoqiang
    Chen, Li
    Wang, Yue
    [J]. 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 6434 - 6437
  • [4] Blind estimation of pharmacokinetic parameters in cardiac DCE-MRI
    Jacob Fluckiger
    Matthias Schabel
    Edward DiBella
    [J]. Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [5] Temporal Huber Regularization for DCE-MRI
    Matti Hanhela
    Mikko Kettunen
    Olli Gröhn
    Marko Vauhkonen
    Ville Kolehmainen
    [J]. Journal of Mathematical Imaging and Vision, 2020, 62 : 1334 - 1346
  • [6] Temporal Huber Regularization for DCE-MRI
    Hanhela, Matti
    Kettunen, Mikko
    Grohn, Olli
    Vauhkonen, Marko
    Kolehmainen, Ville
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (09) : 1334 - 1346
  • [7] Temporal Huber Regularization for DCE-MRI
    Hanhela, Matti
    Kettunen, Mikko
    Gröhn, Olli
    Vauhkonen, Marko
    Kolehmainen, Ville
    [J]. Hanhela, Matti (mattihan@uef.fi), 1600, Springer (62): : 1334 - 1346
  • [8] ROBUST ESTIMATION OF PHARMACOKINETIC PARAMETERS IN DCE-MRI ANALYSIS OF RECTAL TUMOURS
    Tanner, L. N.
    Hughes, N. P.
    Brady, Michael
    Anderson, M.
    Gleeson, F. V.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 69 - +
  • [9] Modified Maximum Entropy Method and Estimating the AIF via DCE-MRI Data Analysis
    Amini Farsani, Zahra
    Schmid, Volker J.
    [J]. ENTROPY, 2022, 24 (02)
  • [10] Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling
    Li, Xin
    Cai, Yu
    Moloney, Brendan
    Chen, Yiyi
    Huang, Wei
    Woods, Mark
    Coakley, Fergus V.
    Rooney, William D.
    Garzotto, Mark G.
    Springer, Charles S., Jr.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2016, 269 : 104 - 112