Rapid identification of strongly lensed gravitational-wave events with machine learning

被引:14
|
作者
Goyal, Srashti [1 ]
Harikrishnan, D. [1 ,2 ]
Kapadia, Shasvath J. [1 ]
Ajith, Parameswaran [1 ,3 ]
机构
[1] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560089, Karnataka, India
[2] Plaksha Tech Leaders Fellowship, Plot 17,Sect 18, Gurugram 122022, Haryana, India
[3] Canadian Inst Adv Res, MaRS Ctr, West Tower,661 Univ Ave, Toronto, ON M5G 1M1, Canada
基金
美国国家科学基金会;
关键词
DIFFRACTION; BINARIES; HEALPIX; DEEP;
D O I
10.1103/PhysRevD.104.124057
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A small fraction of the gravitational-wave signals that will be detected by second and third generation detectors are expected to be strongly lensed by galaxies and clusters, producing multiple observable copies. While optimal Bayesian model selection methods are developed to identify lensed signals, processing tens of thousands (billions) of possible pairs of events detected with second (third) generation detectors is both computationally intensive and time consuming. To mitigate this problem, we propose to use machine learning to rapidly rule out a vast majority of candidate lensed pairs. As a proof of principle, we simulate nonspinning binary black hole events added to Gaussian noise, and train the machine on their timefrequency maps (Q transforms) and localization skymaps (using Bayestar), both of which can be generated in seconds. We show that the trained machine is able to accurately identify lensed pairs with efficiencies comparable to existing Bayesian methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Direct test of the FLRW metric from strongly lensed gravitational wave observations
    Shuo Cao
    Jingzhao Qi
    Zhoujian Cao
    Marek Biesiada
    Jin Li
    Yu Pan
    Zong-Hong Zhu
    [J]. Scientific Reports, 9
  • [32] Direct test of the FLRW metric from strongly lensed gravitational wave observations
    Cao, Shuo
    Qi, Jingzhao
    Cao, Zhoujian
    Biesiada, Marek
    Li, Jin
    Pan, Yu
    Zhu, Zong-Hong
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach
    Cavaglia, M.
    Gaudio, S.
    Hansen, T.
    Staats, K.
    Szczepanczyk, M.
    Zanolin, M.
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01):
  • [34] WEBER-TYPE GRAVITATIONAL-WAVE ANTENNA WITH 2 RESONANT TRANSDUCERS - A NEW TOOL FOR GRAVITATIONAL-WAVE SIGNAL IDENTIFICATION
    CANZONIERE, M
    MAJORANA, E
    OGAWA, Y
    RAPAGNANI, P
    RICCI, F
    [J]. PHYSICAL REVIEW D, 1993, 47 (12): : 5233 - 5237
  • [35] Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4)
    Gompertz, B. P.
    Cutter, R.
    Steeghs, D.
    Galloway, D. K.
    Lyman, J.
    Ulaczyk, K.
    Dyer, M. J.
    Ackley, K.
    Dhillon, V. S.
    O'Brien, P. T.
    Ramsay, G.
    Poshyachinda, S.
    Kotak, R.
    Nuttall, L.
    Breton, R. P.
    Palle, E.
    Pollacco, D.
    Thrane, E.
    Aukkaravittayapun, S.
    Awiphan, S.
    Brown, M. J., I
    Burhanudin, U.
    Chote, P.
    Chrimes, A. A.
    Daw, E.
    Duffy, C.
    Eyles-Ferris, R. A. J.
    Heikkila, T.
    Irawati, P.
    Kennedy, M. R.
    Killestein, T.
    Levan, A. J.
    Littlefair, S.
    Makrygianni, L.
    Marsh, T.
    Sanchez, D. Mata
    Mattila, S.
    Maund, J.
    McCormac, J.
    Mkrtichian, D.
    Mong, Y-L
    Mullaney, J.
    Muller, B.
    Obradovic, A.
    Rol, E.
    Sawangwit, U.
    Stanway, E. R.
    Starling, R. L. C.
    Strom, P. A.
    Tooke, S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (01) : 726 - 738
  • [36] Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events
    Michael Coughlin
    Christopher Stubbs
    [J]. Experimental Astronomy, 2016, 42 : 165 - 178
  • [37] Gravitational-wave standard siren without redshift identification
    Nishizawa, Atsushi
    Yagi, Kent
    Taruya, Atsushi
    Tanaka, Takahiro
    [J]. 9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
  • [38] Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events
    Coughlin, Michael
    Stubbs, Christopher
    [J]. EXPERIMENTAL ASTRONOMY, 2016, 42 (02) : 165 - 178
  • [39] FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Adhikari, R. X.
    Affeldt, C.
    Agathos, M.
    Aggarwal, N.
    Aguiar, O. D.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, R. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Austin, L.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barker, D.
    Barnum, S. H.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Basti, A.
    Batch, J.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2014, 211 (01):
  • [40] Upper limits on gravitational-wave signals based on loudest events
    Brady, PR
    Creighton, JDE
    Wiseman, AG
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (20) : S1775 - S1781