Global versus local superintegrability of nonlinear oscillators

被引:3
|
作者
Anco, Stephen C. [1 ]
Ballesteros, Angel [2 ]
Luz Gandarias, Maria [3 ]
机构
[1] Brock Univ, Dept Math & Stat, St Catharines, ON, Canada
[2] Univ Burgos, Dept Fis, Burgos 09001, Spain
[3] Univ Cadiz, Dept Matemat, Puerto Real, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
Nonlinear oscillator; Superintegrability; First integrals; Local symmetries; Non-constant curvature; Position dependent mass; POSITION-DEPENDENT MASS; WAVE-PACKET REVIVAL; CURVED SPACES; SYSTEMS; POTENTIALS; INTEGRALS;
D O I
10.1016/j.physleta.2018.12.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Liouville (super)integrability of a Hamiltonian system of differential equations is based on the existence of globally well-defined constants of the motion, while Lie point symmetries provide a local approach to conserved integrals. Therefore, it seems natural to investigate in which sense Lie point symmetries can be used to provide information concerning the superintegrability of a given Hamiltonian system. The two-dimensional oscillator and the central force problem are used as benchmark examples to show that the relationship between standard Lie point symmetries and superintegrability is neither straightforward nor universal. In general, it turns out that superintegrability is not related to either the size or the structure of the algebra of variational dynamical symmetries. Nevertheless, all of the first integrals for a given Hamiltonian system can be obtained through an extension of the standard point symmetry method, which is applied to a superintegrable nonlinear oscillator describing the motion of a particle on a space with non-constant curvature and spherical symmetry. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:801 / 807
页数:7
相关论文
共 50 条
  • [21] Local versus global Lipschitz geometry
    Sampaio, Jose Edson
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (05):
  • [22] Global Versus Local Casimir Effect
    Herdegen, Andrzej
    Stopa, Mariusz
    ANNALES HENRI POINCARE, 2010, 11 (06): : 1171 - 1200
  • [23] GLOBAL VARIABLES VERSUS LOCAL VARIABLES
    FISHER, DL
    SOFTWARE-PRACTICE & EXPERIENCE, 1983, 13 (05): : 467 - 469
  • [24] Global versus Local: The Case of Pathe
    Dahiquist, Marina
    FILM HISTORY, 2005, 17 (01): : 29 - 38
  • [25] Global versus local adsorption selectivity
    Pauzat, Francoise
    Marloie, Gael
    Markovits, Alexis
    Ellinger, Yves
    INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2015, 14 (04) : 563 - 570
  • [26] Paratopological groups: Local versus global
    Li, Piyu
    Mou, Lei
    Xu, Yanqin
    TOPOLOGY AND ITS APPLICATIONS, 2020, 286
  • [27] Topological groups: local versus global
    Arhangelskii, A. V.
    Uspenskij, V. V.
    APPLIED GENERAL TOPOLOGY, 2006, 7 (01): : 67 - 72
  • [28] Local versus global assessment of mobility
    Schluter, C
    Trede, M
    INTERNATIONAL ECONOMIC REVIEW, 2003, 44 (04) : 1313 - 1335
  • [29] Global Versus Local Casimir Effect
    Andrzej Herdegen
    Mariusz Stopa
    Annales Henri Poincaré, 2010, 11 : 1171 - 1200
  • [30] FUNCTIONAL SPARSITY: GLOBAL VERSUS LOCAL
    Wang, Haonan
    Kai, Bo
    STATISTICA SINICA, 2015, 25 (04) : 1337 - 1354