Semi-Lagrangian reproducing kernel particle method for fragment-impact problems

被引:95
|
作者
Guan, P. C. [2 ,3 ]
Chi, S. W. [1 ]
Chen, J. S. [1 ]
Slawson, T. R. [4 ]
Roth, M. J. [4 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[2] Natl Taiwan Ocean Univ, Computat & Simulat Ctr, Keelung, Taiwan
[3] Natl Taiwan Ocean Univ, Dept Syst Engn & Naval Architecture, Keelung, Taiwan
[4] USA, Engineer Res & Dev Ctr, Vicksburg, MS USA
关键词
Semi-Lagrangian; Reproducing kernel particle method; Penetration; Meshfree; CONFORMING NODAL INTEGRATION; LARGE-DEFORMATION ANALYSIS; FINITE-ELEMENTS; MESHFREE;
D O I
10.1016/j.ijimpeng.2011.08.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fragment-impact problems exhibit excessive material distortion and complex contact conditions that pose considerable challenges in mesh based numerical methods such as the finite element method (FEM). A semi-Lagrangian reproducing kernel particle method (RKPM) is proposed for fragment-impact modeling to alleviate mesh distortion difficulties associated with the Lagrangian FEM and to minimize the convective transport effect in the Eulerian or Arbitrary Lagrangian Eulerian FEM. A stabilized non-conforming nodal integration with boundary correction for the semi-Lagrangian RKPM is also proposed. Under the framework of semi-Lagrangian RKPM, a kernel contact algorithm is introduced to address multi-body contact. Stability analysis shows that temporal stability of the kernel contact algorithm is related to the velocity gradient between two contacting bodies. The performance of the proposed methods is examined by numerical simulation of penetration processes. Published by Elsevier Ltd.
引用
收藏
页码:1033 / 1047
页数:15
相关论文
共 50 条
  • [31] The moving mesh semi-Lagrangian MMSISL method
    Cook, S. P.
    Budd, C. J.
    Melvin, T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 393 : 484 - 502
  • [32] A Conservative Semi-Lagrangian Method for the Advection Problem
    Efremov, Alexandr
    Karepova, Evgeniya
    Shaidurov, Vladimir
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 325 - 333
  • [33] SEMI-LAGRANGIAN METHODS FOR PARABOLIC PROBLEMS IN DIVERGENCE FORM
    Bonaventura, L.
    Ferretti, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05): : A2458 - A2477
  • [34] Multiscale semi-Lagrangian lattice Boltzmann method
    Kallikounis, N. G.
    Dorschner, B.
    Karlin, I., V
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [35] Semi-Lagrangian Implementation Method using GPU
    Gomez, Yensy
    Hincapie, Juan
    Osorio, John
    Vargas, Julio
    2014 9TH COMPUTING COLOMBIAN CONFERENCE (9CCC), 2014, : 240 - 245
  • [36] Gradient reproducing kernel particle method
    Hashemian, Alireza
    Shodja, Hossein M.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2008, 3 (01) : 127 - 152
  • [37] A second-order semi-Lagrangian particle finite element method for fluid flows
    Jonathan Colom-Cobb
    Julio Garcia-Espinosa
    Borja Servan-Camas
    P. Nadukandi
    Computational Particle Mechanics, 2020, 7 : 3 - 18
  • [38] A second-order semi-Lagrangian particle finite element method for fluid flows
    Colom-Cobb, Jonathan
    Garcia-Espinosa, Julio
    Servan-Camas, Borja
    Nadukandi, P.
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (01) : 3 - 18
  • [39] Reproducing kernel particle method in smoothed particle hydrodynamics
    Yin, Jianwei
    Ma, Zhibo
    Jisuan Wuli/Chinese Journal of Computational Physics, 2009, 26 (04): : 553 - 558
  • [40] A Conservative Semi-Lagrangian Finite Volume Method for Convection–Diffusion Problems on Unstructured Grids
    Ilham Asmouh
    Mofdi El-Amrani
    Mohammed Seaid
    Naji Yebari
    Journal of Scientific Computing, 2020, 85