Ambarzumyan-type theorem for third order linear measure differential equations

被引:1
|
作者
Liu, Yixuan [1 ]
Shi, Guoliang [2 ]
Yan, Jun [2 ]
机构
[1] Civil Aviat Univ China, Sch Sci, Tianjin 300300, Peoples R China
[2] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
关键词
INVERSE SPECTRAL PROBLEMS; SYSTEMS;
D O I
10.1063/5.0064925
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the Ambarzumyan-type theorem for a complex third order linear measure differential equation idy & PRIME;& BULL;+2iqxy & PRIME;dx+yidqx+dpx=lambda ydx on [0, 1] with boundary conditions y1=0, y & PRIME;1=y & PRIME;0, and hy(0)+y & PRIME;& BULL;0=0, where p & ISIN;M(I,R), q & ISIN;M0(I,R), and h=-h. More precisely, we prove that if the eigenvalues of this boundary value problem are (2n pi)(3), n = 0, & PLUSMN;1, & PLUSMN;2, horizontal ellipsis , then h = 0 and the measure coefficients p(x) = p(0), q(x) = 0 for x & ISIN; [0, 1).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] OSCILLATION OF THIRD ORDER QUASI-LINEAR ADVANCED DIFFERENTIAL EQUATIONS
    Dzurina, Jozef
    Baculikova, Blanka
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (03): : 411 - 421
  • [32] SOME PROPERTIES OF THE SOLUTIONS OF THIRD ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS
    Grigorian, G. A.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 147 - 168
  • [33] OSCILLATION OF CERTAIN THIRD-ORDER LINEAR-DIFFERENTIAL EQUATIONS
    ETGEN, GJ
    SHIH, CD
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (01) : 151 - 155
  • [34] Differential Invariants For Nonlinear Third Order Evolution Type Partial Differential Equations
    Safdar, M.
    Taj, Safia
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [35] Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions
    Aktas, Mustafa Fahri
    Cakmak, Devrim
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 59 - 66
  • [36] Hille-Wintner type comparison criteria for the half-linear differential equations of third order
    Kiselak, Jozef
    [J]. JOURNAL OF APPLIED ANALYSIS, 2014, 20 (02) : 99 - 104
  • [37] Kneser-Type Oscillation Criteria for Half-Linear Delay Differential Equations of Third Order
    Masood, Fahd
    Cesarano, Clemente
    Moaaz, Osama
    Askar, Sameh S.
    Alshamrani, Ahmad M.
    El-Metwally, Hamdy
    [J]. SYMMETRY-BASEL, 2023, 15 (11):
  • [38] Descending order condition of two forms of third-order linear differential equations
    Li, Angui
    Wu, Tan
    [J]. Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 19 (05): : 520 - 524
  • [40] Sharp oscillation theorem for fourth-order linear delay differential equations
    Irena Jadlovská
    Jozef Džurina
    John R. Graef
    Said R. Grace
    [J]. Journal of Inequalities and Applications, 2022