The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities?

被引:12
|
作者
Wang, Yiming [1 ]
Zhang, Zengxin [1 ,2 ]
Chen, Xi [1 ,3 ]
机构
[1] Hohai Univ, Coll Hydrol & Water Resources, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Peoples R China
[2] Nanjing Forestry Univ, Coll Forestry, Joint Innovat Ctr Modern Forestry Studies, Nanjing 210037, Peoples R China
[3] Tianjin Univ, Inst Surface Earth Syst Sci, Sch Earth Syst Sci, Tianjin 300072, Peoples R China
来源
FORESTS | 2022年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
anthropogenic activities; climate variations; ecological program; forest; Net Primary Productivity; Yangtze River basin; NET PRIMARY PRODUCTIVITY; POYANG LAKE BASIN; ECOSYSTEM SERVICES; LAND-USE; VEGETATION CHANGES; GREEN PROGRAM; URBANIZATION; RESTORATION; RESPONSES; DYNAMICS;
D O I
10.3390/f13010082
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Under the combined effect of climate variations and anthropogenic activities, the forest ecosystem in the Yangtze River Basin (YRB) has experienced dramatic changes in recent decades. Quantifying their relative contributions can provide a valuable reference for forest management and ecological sustainability. In this study, we selected net primary productivity (NPP) as an indicator to investigate forest variations. Meanwhile, we established eight scenarios based on the slope coefficients of the potential NPP (PNPP) and actual NPP (ANPP), and human-induced NPP (HNPP) to quantify the contributions of anthropogenic activities and climate variations to forest variations in the YRB from 2000 to 2015. The results revealed that in general, the total forest ANPP increased by 10.42 TgC in the YRB, and forest restoration occurred in 57.25% of the study area during the study period. The forest degradation was mainly observed in the Wujiang River basin, Dongting Lake basin, and Poyang Lake basin. On the whole, the contribution of anthropogenic activities was greater than climate variations on both forest restoration and degradation in the YRB. Their contribution to forest restoration and degradation varied in different tributaries. Among the five forest types, shrubs experienced the most severe degradation during the study period, which should arouse great attention. Ecological restoration programs implemented in YRB have effectively mitigated the adverse effect of climate variations and dominated forest restoration, while rapid urbanization in the mid-lower region has resulted in forest degradation. The forest degradation in Dongting Lake basin and Poyang Lake basin may be ascribed to the absence of the Natural Forest Conservation Program. Therefore, we recommend that the extent of the Natural Forest Conservation Program should expand to cover these two basins. The current research could improve the understanding of the driving mechanism of forest dynamics and promote the effectiveness of ecological restoration programs in the YRB.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Analysis of drought and flood alternation and its driving factors in the Yangtze River Basin under climate change
    Yang, Peng
    Zhang, Shengqing
    Xia, Jun
    Zhan, Chesheng
    Cai, Wei
    Wang, Wenyu
    Luo, Xiangang
    Chen, Nengcheng
    Li, Jiang
    [J]. ATMOSPHERIC RESEARCH, 2022, 270
  • [32] Impacts of climate change on streamflow in the upper Yangtze River basin
    Buda Su
    Jinlong Huang
    Xiaofan Zeng
    Chao Gao
    Tong Jiang
    [J]. Climatic Change, 2017, 141 : 533 - 546
  • [33] Impacts of climate change on streamflow in the upper Yangtze River basin
    Su, Buda
    Huang, Jinlong
    Zeng, Xiaofan
    Gao, Chao
    Jiang, Tong
    [J]. CLIMATIC CHANGE, 2017, 141 (03) : 533 - 546
  • [34] Responses of Streamflow to Climate Change and Human Activities in a River Basin, Northeast China
    Zhang, Hanwen
    Xu, Wei
    Xu, Xintong
    Lu, Baohong
    [J]. ADVANCES IN METEOROLOGY, 2017, 2017
  • [35] Impact of climate change and human activities on runoff in the Weihe River Basin, China
    Chang, Jianxia
    Wang, Yimin
    Istanbulluoglu, Erkan
    Bai, Tao
    Huang, Qiang
    Yang, Dawen
    Huang, Shengzhi
    [J]. QUATERNARY INTERNATIONAL, 2015, 380 : 169 - 179
  • [36] Vulnerability of forest vegetation to anthropogenic climate change in China
    Wan, Ji-Zhong
    Wang, Chun-Jing
    Qu, Hong
    Liu, Ran
    Zhang, Zhi-Xiang
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 621 : 1633 - 1641
  • [37] Projected Effects of Climate Change on Future Hydrological Regimes in the Upper Yangtze River Basin, China
    Wang, Yuqian
    Yang, Xiaoli
    Zhang, Mengru
    Zhang, Linqi
    Yu, Xiaohan
    Ren, Liliang
    Liu, Yi
    Jiang, Shanhu
    Yuan, Fei
    [J]. ADVANCES IN METEOROLOGY, 2019, 2019
  • [38] Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China
    Zhang, Wei
    Wang, Lunche
    Xiang, Feifei
    Qin, Wenmin
    Jiang, Weixia
    [J]. ECOLOGICAL INDICATORS, 2020, 110
  • [39] Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China
    Zhang, Yong
    Liu, Shiyin
    Xu, Junli
    Shangguan, Donghui
    [J]. ENVIRONMENTAL GEOLOGY, 2008, 56 (01): : 59 - 68
  • [40] Effects of climate change and anthropogenic activity on the vegetation greening in the Liaohe River Basin of northeastern China
    Zhu, Liya
    Sun, Shuang
    Li, Yang
    Liu, Xingbao
    Hu, Ke
    [J]. ECOLOGICAL INDICATORS, 2023, 148