Harmonic Maps and Biharmonic Maps

被引:3
|
作者
Urakawa, Hajime [1 ]
机构
[1] Tohoku Univ, Inst Int Educ, Sendai, Miyagi 9808576, Japan
来源
SYMMETRY-BASEL | 2015年 / 7卷 / 02期
基金
日本学术振兴会;
关键词
LAGRANGIAN SUBMANIFOLDS; LEGENDRIAN SUBMANIFOLDS; LIE-GROUPS; HYPERSURFACES; MANIFOLDS;
D O I
10.3390/sym7020651
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
引用
收藏
页码:651 / 674
页数:24
相关论文
共 50 条
  • [41] Biharmonic maps in two dimensions
    Ye-Lin Ou
    Sheng Lu
    Annali di Matematica Pura ed Applicata, 2013, 192 : 127 - 144
  • [42] Bubbling phenomena of biharmonic maps
    Nakauchi, Nobumitsu
    Urakawa, Hajime
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 355 - 375
  • [43] The index of biharmonic maps in spheres
    Loubeau, E
    Oniciuc, C
    COMPOSITIO MATHEMATICA, 2005, 141 (03) : 729 - 745
  • [44] Biharmonic maps in two dimensions
    Ou, Ye-Lin
    Lu, Sheng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (01) : 127 - 144
  • [45] A regularity theory of biharmonic maps
    Chang, SYA
    Wang, LH
    Yang, PC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1999, 52 (09) : 1113 - 1137
  • [46] On Minimizing extrinsic biharmonic maps
    Fardoun, Ali
    Saliba, Lara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [47] Existence of Equivariant Biharmonic Maps
    Hornung, Peter
    Moser, Roger
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (08) : 2397 - 2422
  • [48] On Minimizing extrinsic biharmonic maps
    Ali Fardoun
    Lara Saliba
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [49] ON THE CONFORMAL EQUIVALENCE OF HARMONIC MAPS AND EXPONENTIALLY HARMONIC MAPS
    HONG, MC
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 : 488 - 492
  • [50] SOME RESULTS ON f-HARMONIC MAPS AND f-BIHARMONIC SUBMANIFOLDS
    Remli, E.
    Cherif, A. M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 299 - 307