KHOVANOV HOMOLOGY FROM FLOER COHOMOLOGY

被引:21
|
作者
Abouzaid, Mohammed [1 ]
Smith, Ivan [2 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] UNIV Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
FUKAYA CATEGORIES; COHERENT SHEAVES; NILPOTENT SLICES; KNOT HOMOLOGY; DEHN TWISTS; MANIFOLDS;
D O I
10.1090/jams/902
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper realises the Khovanov homology of a link in the 3-sphere as a Lagrangian Floer cohomology group, establishing a conjecture of Seidel and the second author. The starting point is the previously established formality theorem for the symplectic arc algebra over a field k of characteristic zero. Here we prove the symplectic cup and cap bimodules which relate different symplectic arc algebras are themselves formal over k, and construct a long exact triangle for symplectic Khovanov cohomology. We then prove the symplectic and combinatorial arc algebras are isomorphic over the integers in a manner compatible with the cup bimodules. It follows that Khovanov homology and symplectic Khovanov cohomology co-incide in characteristic zero. © 2018 American Mathematical Society
引用
收藏
页码:1 / 79
页数:79
相关论文
共 50 条
  • [31] NOT EVEN KHOVANOV HOMOLOGY
    Vaz, Pedro
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (01) : 223 - 256
  • [32] Localization in Khovanov homology
    Stoffregen, Matthew
    Zhang, Melissa
    GEOMETRY & TOPOLOGY, 2024, 28 (04)
  • [33] An Introduction to Khovanov Homology
    Kauffman, Louis H.
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 105 - 139
  • [34] Torsion of Khovanov homology
    Shumakovitch, Alexander N.
    FUNDAMENTA MATHEMATICAE, 2014, 225 : 343 - 364
  • [35] Rotors in Khovanov Homology
    MacColl, Joseph
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 159 - 169
  • [36] Odd Khovanov homology
    Ozsvath, Peter S.
    Rasmussen, Jacob
    Szabo, Zoltan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03): : 1465 - 1488
  • [37] A refinement of Khovanov homology
    Lobb, Andrew
    Watson, Liam
    GEOMETRY & TOPOLOGY, 2021, 25 (04) : 1861 - 1917
  • [38] Quilted Floer cohomology
    Wehrheim, Katrin
    Woodward, Chris T.
    GEOMETRY & TOPOLOGY, 2010, 14 (02) : 833 - 902
  • [39] Evolutionary Khovanov homology
    Shen, Li
    Liu, Jian
    Wei, Guo-Wei
    AIMS MATHEMATICS, 2024, 9 (09): : 26139 - 26165
  • [40] GAUGED HAMILTONIAN FLOER HOMOLOGY I: DEFINITION OF THE FLOER HOMOLOGY GROUPS
    Xu, Guangbo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2967 - 3015