Comparison of GWO-SVM and Random Forest Classifiers in a LevelSet based approach for Bladder wall segmentation and characterisation using MR images

被引:0
|
作者
Trigui, Rania [1 ]
Adel, Mouloud [1 ]
Di Bisceglie, Mathieu [2 ]
Wojak, Julien [1 ]
Pinol, Jessica [3 ]
Faure, Alice [3 ]
Chaumoitre, Katia [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel, Marseille, France
[2] Marseille Univ, Hosp Ctr, Paediat Surg Dept, Marseille, France
[3] Aix Marseille Univ, North Hosp, Med Imaging Serv, Marseille, France
关键词
Bladder wall segmentation; Classification; Optimization; texture analysis; Magnetic Resonance Imaging;
D O I
10.1109/IPTA54936.2022.9784127
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to characterize the bladder state and functioning, it is necessary to succeed the segmentation of its wall in MR images. In this context, we propose a computeraided diagnosis system based on segmentation and classification applied to the Bladder Wall (BW), as a part of spina bifida disease study. The proposed system starts with the BW extraction using an improved levelSet based algorithm. Then an optimized classification is proposed using some selected features. Obtained results proves the efficiency of the proposed system, which can be significantly helpful for radiologist avoiding the fastidious manual segmentation and providing a precise idea about the spina bifida severity
引用
收藏
页数:4
相关论文
共 28 条
  • [1] A DEEP LEARNING-BASED APPROACH FOR ACCURATE SEGMENTATION OF BLADDER WALL USING MR IMAGES
    Hammouda, K.
    Khalifa, F.
    Soliman, A.
    Ghazal, M.
    Abou El-Ghar, M.
    Haddad, A.
    Elmogy, M.
    Darwish, H. E.
    Keynton, R.
    El-Baz, A.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [2] PIxel-Level Segmentation of Bladder Tumors on MR Images Using a Random Forest Classifier
    Li, Ziqi
    Feng, Na
    Pu, Huangsheng
    Dong, Qi
    Liu, Yan
    Liu, Yang
    Xu, Xiaopan
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2022, 21
  • [3] An efficient approach for brain tumor detection and segmentation in MR brain images using random forest classifier
    Thayumanavan, Meenal
    Ramasamy, Asokan
    [J]. CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2021, 29 (03): : 266 - 274
  • [4] Carotid wall segmentation in longitudinal ultrasound images using structured random forest
    Nagaraj, Y.
    Asha, C. S.
    Teja, Hema Sai A.
    Narasimhadhan, A., V
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 69 : 753 - 767
  • [5] A new approach to unsupervised Markov random field-based segmentation of MR images
    Morrison, MW
    Dingle, AA
    Attikiouzel, Y
    [J]. ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 357 - 360
  • [6] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Anjali Gautam
    Balasubramanian Raman
    [J]. Multimedia Tools and Applications, 2019, 78 : 6559 - 6579
  • [7] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Gautam, Anjali
    Raman, Balasubramanian
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 6559 - 6579
  • [8] SEGMENTATION OF BRAIN TUMOR TISSUES IN MR IMAGES USING MULTIRESOLUTION TRANSFORMS AND RANDOM FOREST CLASSIFIER WITH ADABOOST TECHNIQUE
    Selvathi, D.
    Selvaraj, Henry
    [J]. 2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [9] A 3D CNN WITH A LEARNABLE ADAPTIVE SHAPE PRIOR FOR ACCURATE SEGMENTATION OF BLADDER WALL USING MR IMAGES
    Hammouda, K.
    Khalifa, F.
    Soliman, A.
    Abdeltawab, H.
    Ghazal, M.
    Abou El-Ghar, M.
    Haddad, A.
    Darwish, H. E.
    Keynton, R.
    El-Baz, A.
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 935 - 938
  • [10] BRAIN TISSUE SEGMENTATION IN MRI IMAGES USING RANDOM FOREST CLASSIFIER AND GOSSIP BASED NEIGHBORHOOD
    Eslami, Saeideh
    Azmi, Reza
    Zahedi, Morteza
    Anbiaee, Robab
    [J]. 2011 3RD INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 1, 2012, : 617 - 621