A new approach to unsupervised Markov random field-based segmentation of MR images

被引:0
|
作者
Morrison, MW
Dingle, AA
Attikiouzel, Y
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a new approach to the unsupervised segmentation of images. A Markov random field model is used for prior label field modelling. Unlike conventional stochastic model-based approaches, each image class is not characterised by a parametric model. The algorithm compares the data in local windows around each pixel with the global distribution of data in each class using appropriate distance metrics. A novel method for determining the number of image classes is presented.
引用
收藏
页码:357 / 360
页数:4
相关论文
共 50 条
  • [1] Markov random field segmentation of brain MR images
    Held, K
    Kops, ER
    Krause, BJ
    Wells, WM
    Kikinis, R
    Muller-Gartner, HW
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 878 - 886
  • [2] AN UNSUPERVISED HIDDEN MARKOV RANDOM FIELD BASED SEGMENTATION OF POLARIMETRIC SAR IMAGES
    Banerjee, Biplab
    De, Shaunak
    Manickam, Surendar
    Bhattacharya, Avik
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1536 - 1539
  • [3] Dirichlet Markov Random Field Segmentation Of Brain MR Images
    Wang, Wentao
    Chen, Cong
    [J]. 2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [4] Experiments on supervised and unsupervised segmentation of texture images based on Markov Random Field models
    Moscinska, K
    [J]. SIGNAL ANALYSIS & PREDICTION I, 1997, : 485 - 488
  • [5] Unsupervised Segmentation of Industrial Images Using Markov Random Field Model
    Islam, Mofakharul
    Yearwood, John
    Vamplew, Peter
    [J]. TECHNOLOGICAL DEVELOPMENTS IN EDUCATION AND AUTOMATION, 2010, : 369 - 374
  • [6] A hidden Markov random field model for segmentation of brain MR images
    Zhang, YY
    Brady, M
    Smith, S
    [J]. MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 : 1126 - 1137
  • [7] MARKOV RANDOM-FIELD MODELS FOR UNSUPERVISED SEGMENTATION OF TEXTURED COLOR IMAGES
    PANJWANI, DK
    HEALEY, G
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (10) : 939 - 954
  • [8] Unsupervised Texture Segmentation of Natural Scene Images Using Region-based Markov Random Field
    Na Kyoung O
    Changick Kim
    [J]. Journal of Signal Processing Systems, 2016, 83 : 423 - 436
  • [9] Unsupervised Texture Segmentation of Natural Scene Images Using Region-based Markov Random Field
    O, Na Kyoung
    Kim, Changick
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2016, 83 (03): : 423 - 436
  • [10] An Unsupervised Ensemble-based Markov Random Field Approach to Microscope Cell Image Segmentation
    Antal, Balint
    Remenyik, Bence
    Hajdu, Andras
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS (SIGMAP 2013), 2013, : 94 - 99