LOCAL EXACT CONTROLLABILITY FOR THE PLANAR COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS

被引:5
|
作者
Tao, Qiang [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
基金
美国国家科学基金会;
关键词
compressible MHD equations; controllability; continuity dependence; NAVIER-STOKES SYSTEM; EXACT INTERNAL CONTROLLABILITY; NULL CONTROLLABILITY; EXISTENCE; RATES;
D O I
10.1137/17M113407X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the boundary controllability for the planar compressible magnetohydrodynamic equations. For a constant target trajectory, we prove that the system is exactly controllable by the control functions acting on the whole boundary, given the small H-2 initial perturbation. The proof relies on the continuous dependence of the solution on the initial data and the Carleman inequality for the velocity and magnetic fields. A suitable space for the density is introduced in the fixed point argument to reduce the regularity of the initial data.
引用
收藏
页码:4461 / 4487
页数:27
相关论文
共 50 条
  • [21] Decay of the compressible magnetohydrodynamic equations
    Ruiying Wei
    Yin Li
    Zheng-an Yao
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2499 - 2524
  • [22] On the ideal compressible magnetohydrodynamic equations
    Tang, Tong
    Wang, Yuexun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 1 - 19
  • [23] Decay of the compressible magnetohydrodynamic equations
    Wei, Ruiying
    Li, Yin
    Yao, Zheng-an
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2499 - 2524
  • [24] Local existence of compressible magnetohydrodynamic equations without initial compatibility conditions
    Zhang, Yiying
    Guo, Zhenhua
    Fang, Li
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, : 12684 - 12719
  • [25] Local exact boundary controllability for nonlinear vibrating string equations
    Li, TT
    Xu, YL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4062 - 4071
  • [26] Local Exact Controllability for the One-Dimensional Compressible Navier–Stokes Equation
    Sylvain Ervedoza
    Olivier Glass
    Sergio Guerrero
    Jean-Pierre Puel
    Archive for Rational Mechanics and Analysis, 2012, 206 : 189 - 238
  • [27] EXACT SOLUTIONS OF THE MAGNETOHYDRODYNAMIC EQUATIONS
    WILLIAMS, WE
    JOURNAL OF FLUID MECHANICS, 1960, 8 (03) : 452 - 464
  • [28] NULL CONTROLLABILITY AND EXACT CONTROLLABILITY FOR PARABOLIC EQUATIONS
    WECK, N
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1987, 97 : 389 - 396
  • [29] Global existence and exponential stability of solutions for planar compressible Hall-magnetohydrodynamic equations
    Tao, Qiang
    Yang, Ying
    Yao, Zheng-an
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) : 3788 - 3831
  • [30] Low Mach limit to one-dimensional nonisentropic planar compressible magnetohydrodynamic equations
    Liu, Xin
    Wang, Lijuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 580 - 599