LOCAL EXACT CONTROLLABILITY FOR THE PLANAR COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS

被引:5
|
作者
Tao, Qiang [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Peoples R China
基金
美国国家科学基金会;
关键词
compressible MHD equations; controllability; continuity dependence; NAVIER-STOKES SYSTEM; EXACT INTERNAL CONTROLLABILITY; NULL CONTROLLABILITY; EXISTENCE; RATES;
D O I
10.1137/17M113407X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the boundary controllability for the planar compressible magnetohydrodynamic equations. For a constant target trajectory, we prove that the system is exactly controllable by the control functions acting on the whole boundary, given the small H-2 initial perturbation. The proof relies on the continuous dependence of the solution on the initial data and the Carleman inequality for the velocity and magnetic fields. A suitable space for the density is introduced in the fixed point argument to reduce the regularity of the initial data.
引用
收藏
页码:4461 / 4487
页数:27
相关论文
共 50 条
  • [1] LOCAL EXACT CONTROLLABILITY FOR THE MAGNETOHYDRODYNAMIC EQUATIONS REVISITED
    Barbu, Viorel
    Havarneanu, Teodor
    Popa, Catalin
    Sritharan, S. S.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (05) : 481 - 504
  • [2] Exact controllability for the magnetohydrodynamic equations
    Barbu, V
    Havârneanu, T
    Popa, C
    Sritharan, SS
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (06) : 732 - 783
  • [3] LOCAL EXACT BOUNDARY CONTROLLABILITY FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Molina, Nicolas
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (03) : 2152 - 2184
  • [4] Local Controllability to Trajectories of the Magnetohydrodynamic Equations
    Badra, Mehdi
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (04) : 631 - 660
  • [5] Local Controllability to Trajectories of the Magnetohydrodynamic Equations
    Mehdi Badra
    [J]. Journal of Mathematical Fluid Mechanics, 2014, 16 : 631 - 660
  • [6] Exact internal controllability for the two-dimensional magnetohydrodynamic equations
    Havarneanu, Teodor
    Popa, Catalin
    Sritharan, S. S.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (05) : 1802 - 1830
  • [7] EXACT INTERNAL CONTROLLABILITY FOR THE TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUATIONS
    Havarneanu, Teodor
    Popa, Catalin
    Sritharan, S. S.
    [J]. APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 169 - 170
  • [8] LOCAL STRONG SOLUTIONS TO THE COMPRESSIBLE VISCOUS MAGNETOHYDRODYNAMIC EQUATIONS
    Tang, Tong
    Gao, Hongjun
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (05): : 1617 - 1633
  • [9] EXACT INTERNAL CONTROLLABILITY FOR THE MAGNETOHYDRODYNAMIC EQUATIONS IN MULTI-CONNECTED DOMAINS
    Havarneanu, Teodor
    Popa, Catalin
    Sritharan, S. S.
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2006, 11 (08) : 893 - 929
  • [10] Local exact controllability for the two- and three-dimensional compressible Navier-Stokes equations
    Ervedoza, Sylvain
    Glass, Olivier
    Guerrero, Sergio
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (11) : 1660 - 1691