High-power optically pumped VECSEL using a double-well resonant periodic gain structure

被引:20
|
作者
Fan, L [1 ]
Hader, J
Schillgalies, M
Fallahi, M
Zakharian, AR
Moloney, JV
Bedford, R
Murray, JT
Koch, SW
Stolz, W
机构
[1] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Ctr Math Sci, Tucson, AZ 85721 USA
[3] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
[4] Arete Assoc, Tucson, AZ 85751 USA
[5] Univ Marburg, Ctr Mat Sci, D-35032 Marburg, Germany
[6] Univ Marburg, Dept Phys, D-35032 Marburg, Germany
关键词
double-quantum-well; high-power laser; InGaAs; optical pumping; resonant periodic gain (RPG); semiconductor laser; vertical-external-cavity surface emitting laser (VECSEL);
D O I
10.1109/LPT.2005.853536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the design and fabrication of an optically pumped vertical-external-cavity surface-emitting lasers with double-well resonant periodic gain structure. Each double-well consists of two 4-nm-thick InGaAs strained quantum wells. The double-well provides optimum overlap between the quantum wells and the antinodes of the standing wave of laser signal at high-power and high-temperature, operation. The structure is more tolerant to variation of the growth, processing, and operating temperature for maintaining high modal gain. For a 230-mu m diameter pump spot, over 4-W continuous-wave output with a slope efficiency of 39% is demonstrated at 30 degrees C without thermal rollover.
引用
收藏
页码:1764 / 1766
页数:3
相关论文
共 50 条
  • [1] High-power 1.25 μm InAs QD VECSEL based on resonant periodic gain structure
    Albrecht, Alexander R.
    Rotter, Thomas J.
    Hains, Christopher P.
    Stintz, Andreas
    Xin, Guofeng
    Wang, Tsuei-Lian
    Kaneda, Yushi
    Moloney, Jerome V.
    Malloy, Kevin J.
    Balakrishnan, Ganesh
    [J]. VERTICAL EXTERNAL CAVITY SURFACE EMITTING LASERS (VECSELS), 2011, 7919
  • [2] High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader
    Lindberg, H
    Strassner, M
    Bengtsson, J
    Larsson, A
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (05) : 1233 - 1235
  • [3] High-Power Optically Pumped Semiconductor Laser
    Wang, Tsuei-Lian
    Kaneda, Yushi
    Yarborough, J. M.
    Hader, Joerg
    Moloney, Jerome V.
    Koch, Stephan
    Kunert, Bernardette
    Stoltz, Wolfgang
    [J]. 2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2615 - +
  • [4] High-power optically pumped femtosecond VECSELs
    Mangold, M.
    Sieber, O. D.
    Wittwer, V. J.
    Hoffmann, M.
    Golling, M.
    Suedmeyer, T.
    Keller, U.
    [J]. 2012 23RD IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC), 2012, : 139 - 140
  • [5] High-power optically pumped type-II quantum-well lasers
    McDaniel, DL
    Moeller, C
    Falcon, M
    Murry, SJ
    Lin, CH
    Yang, RQ
    Pei, SS
    Gianardi, DM
    Yan, C
    Ongstad, A
    [J]. IN-PLANE SEMICONDUCTOR LASERS: FROM ULTRAVIOLET TO MID-INFRARED II, 1998, 3284 : 285 - 293
  • [6] High-Power Optically Pumped Semiconductor Laser Applications
    Morioka, S. Brandon
    [J]. VERTICAL EXTERNAL CAVITY SURFACE EMITTING LASERS (VECSELS), 2011, 7919
  • [7] HIGH-POWER OPTICALLY PUMPED FAR INFRARED LASERS
    BROWN, F
    [J]. INFRARED PHYSICS, 1976, 16 (1-2): : 171 - 174
  • [8] Optically pumped high-power semiconductor disk laser with gain element engineered for wide tunability
    Borgentun, C.
    Bengtsson, J.
    Larsson, A.
    Demaria, F.
    Hein, A.
    Unger, P.
    [J]. SEMICONDUCTOR LASERS AND LASER DYNAMICS IV, 2010, 7720
  • [9] HIGH-POWER OPTICALLY PUMPED FAR INFRARED LASERS
    PLANT, TK
    NEWMAN, LA
    DANIELEWICZ, EJ
    DETEMPLE, TA
    COLEMAN, PD
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1974, MT22 (12) : 988 - 990
  • [10] Optically driven sorting system using double-well potential
    Hayashi, Y
    Fujimura, R
    Ashihara, S
    Shimura, T
    Kuroda, K
    [J]. 2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 2005, : 951 - 952