Asymptotic analysis of second-order boundary layer correctors

被引:4
|
作者
Onofrei, Daniel [1 ,2 ]
Vernescu, Bogdan [3 ]
机构
[1] Univ Utah, Dept Math, JWB, Salt Lake City, UT 84112 USA
[2] Univ Houston, Dept Math, Houston, TX USA
[3] WPI, Dept Math, Worcester, MA 01609 USA
关键词
homogenization; error estimates; nonsmooth coefficients; ERROR ESTIMATE; HOMOGENIZATION;
D O I
10.1080/00036811.2011.616498
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we extend the ideas presented in Onofrei and Vernescu [Asymptotic Anal. 54 (2007), pp. 103-123] and introduce suitable second-order boundary layer correctors, to study the H-1-norm error estimate for the classical problem of homogenization, i.e. {-del.(A(x/epsilon)del u(epsilon)(x)) = f in Omega, u(epsilon) = 0 on partial derivative Omega. Previous second-order boundary layer results assume either smooth enough coefficients (which is equivalent to assuming smooth enough correctors chi(j), chi(ij) is an element of W-1,W-infinity), or smooth homogenized solution u(0), to obtain an estimate of order O(epsilon(3/2)). For this we use some ideas related to the periodic unfolding method proposed by Cioranescu et al. [C. R. Acad. Sci. Paris, Ser. I 335 (2002), pp. 99-104]. We prove that in two dimensions, for non-smooth coefficients and general data, one obtains an estimate of order O(epsilon(3/2)). In three dimensions the same estimate is obtained assuming chi(j), chi(ij) is an element of W-1,W-p, with p>3.
引用
收藏
页码:1097 / 1110
页数:14
相关论文
共 50 条
  • [31] First- and Second-Order Asymptotic Analysis with Applications in Quasiconvex Optimization
    Flores-Bazan, F.
    Hadjisavvas, N.
    Lara, F.
    Montenegro, I.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (02) : 372 - 393
  • [32] First- and Second-Order Asymptotic Analysis with Applications in Quasiconvex Optimization
    F. Flores-Bazán
    N. Hadjisavvas
    F. Lara
    I. Montenegro
    [J]. Journal of Optimization Theory and Applications, 2016, 170 : 372 - 393
  • [33] Asymptotic analysis of a second-order singular perturbation model for phase transitions
    Marco Cicalese
    Emanuele Nunzio Spadaro
    Caterina Ida Zeppieri
    [J]. Calculus of Variations and Partial Differential Equations, 2011, 41 : 127 - 150
  • [34] Second-order variational analysis in second-order cone programming
    Nguyen T. V. Hang
    Boris S. Mordukhovich
    M. Ebrahim Sarabi
    [J]. Mathematical Programming, 2020, 180 : 75 - 116
  • [35] Comments on "A new second-order turbulence closure scheme for the planetary boundary layer"
    Mironov, DV
    Gryanik, VM
    Lykossov, VN
    Zilitinkevich, SS
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 1999, 56 (19) : 3478 - 3481
  • [36] BOUNDARY AND INTERIOR TRANSITION LAYER PHENOMENA FOR PAIRS OF SECOND-ORDER DIFFERENTIAL EQUATIONS
    FIFE, PC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 54 (02) : 497 - 521
  • [37] Evolution of conditionally averaged second-order structure functions in a transitional boundary layer
    Yao, H.
    Alves-Portela, F.
    Papadakis, G.
    [J]. PHYSICAL REVIEW FLUIDS, 2020, 5 (09)
  • [38] PRIMARY IMPORTANCE OF SECOND-ORDER BOUNDARY LAYER THEORY IN FIXED POINT PHENOMENON
    SCHNEIDE.LI
    DENNY, VE
    CATTON, I
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (11): : 1096 - &
  • [39] Second-order variational analysis in second-order cone programming
    Hang, Nguyen T. V.
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    [J]. MATHEMATICAL PROGRAMMING, 2020, 180 (1-2) : 75 - 116
  • [40] Real Second-Order Freeness and the Asymptotic Real Second-Order Freeness of Several Real Matrix Models
    Redelmeier, Catherine Emily Iska
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (12) : 3353 - 3395