Data-Driven LQR Design for LTI systems with Exogenous Inputs

被引:1
|
作者
Digge, Vijayanand [1 ]
Pasumarthy, Ramkrishna [2 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Elect Engn, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Robert Bosch Ctr Data Sci & Artificial Intelligen, Dept Elect Engn, Chennai 600036, Tamil Nadu, India
[3] Indian Inst Technol Madras, Network Syst Learning Control & Evolut Grp, Chennai 600036, Tamil Nadu, India
关键词
D O I
10.1109/MED54222.2022.9837171
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a data-driven state feedback control law, based on a linear quadratic regulator (LQR) design, for systems with exogenous inputs. In general, this framework is referred to as a data-driven min-max controller, and is more robust to disturbances than the standard LQR controllers. Instead of relying on system models, in this work, the state feedback control law is computed directly from the knowledge of the inputs and the states. The LQR gain is parametrized with matrices that are directly estimated using open-loop experiment data of the system. We experimentally validate our results by implementing the data driven controller for performance management of a web-server hosted on a private cloud.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 50 条
  • [21] Data-driven distributionally robust LQR with multiplicative noise
    Coppens, Peter
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    [J]. LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 521 - 530
  • [22] On the Role of Regularization in Direct Data-Driven LQR Control
    Dörfler, Florian
    Tesi, Pietro
    De Persis, Claudio
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 1091 - 1098
  • [23] Data-driven LQR for permanent magnet synchronous machines
    Suleimenov, Kanat
    Ton Duc Do
    [J]. 2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,
  • [24] A kernel-based nonparametric approach to direct data-driven control of LTI systems
    Cerone, V.
    Regruto, D.
    Abuabiah, M.
    Fadda, E.
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 1026 - 1031
  • [25] Data-Driven Analysis Methods for Controllability and Observability of A Class of Discrete LTI Systems with Delays
    Zhou, Binquan
    Wang, Zhuo
    Zhai, Yueyang
    Yuan, Heng
    [J]. PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 380 - 384
  • [26] Data-Driven Design of Braking Control Systems
    Formentin, Simone
    De Filippi, Pierpaolo
    Corno, Matteo
    Tanelli, Mara
    Savaresi, Sergio M.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (01) : 186 - 193
  • [27] Data-driven surrogate models for LTI systems via saddle-point dynamics
    Martin, Tim
    Koch, Anne
    Allgoewer, Frank
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 953 - 958
  • [28] Data-driven Event-triggered Control for Discrete-time LTI Systems
    Digge, Vijayanand
    Pasumarthy, Ramkrishna
    [J]. 2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1355 - 1360
  • [29] Data-Driven Design
    Schmidt, Aaron
    [J]. LIBRARY JOURNAL, 2016, 141 (06) : 26 - 26
  • [30] A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems
    Janssens, Pieter
    Pipeleers, Goele
    Swevers, Jan
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (02) : 546 - 551