Data-Driven LQR Design for LTI systems with Exogenous Inputs

被引:1
|
作者
Digge, Vijayanand [1 ]
Pasumarthy, Ramkrishna [2 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Elect Engn, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Robert Bosch Ctr Data Sci & Artificial Intelligen, Dept Elect Engn, Chennai 600036, Tamil Nadu, India
[3] Indian Inst Technol Madras, Network Syst Learning Control & Evolut Grp, Chennai 600036, Tamil Nadu, India
关键词
D O I
10.1109/MED54222.2022.9837171
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a data-driven state feedback control law, based on a linear quadratic regulator (LQR) design, for systems with exogenous inputs. In general, this framework is referred to as a data-driven min-max controller, and is more robust to disturbances than the standard LQR controllers. Instead of relying on system models, in this work, the state feedback control law is computed directly from the knowledge of the inputs and the states. The LQR gain is parametrized with matrices that are directly estimated using open-loop experiment data of the system. We experimentally validate our results by implementing the data driven controller for performance management of a web-server hosted on a private cloud.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 50 条
  • [1] Data-driven quadratic stabilization and LQR control of LTI systems
    Dai, Tianyu
    Sznaier, Mario
    [J]. AUTOMATICA, 2023, 153
  • [2] Data-Driven Adaptive LQR for Completely Unknown LTI Systems
    Jha, Sumit Kumar
    Roy, Sayan Basu
    Bhasin, Shubhendu
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 4156 - 4161
  • [3] Data-Driven LQR Control Design
    Goncalves da Silva, Gustavo R.
    Bazanella, Alexandre S.
    Lorenzini, Charles
    Campestrini, Luciola
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 180 - 185
  • [4] Data-Driven Criteria for Detectability and Observer Design for LTI Systems
    Mishra, Vikas Kumar
    van Waarde, Henk J.
    Bajcinca, Naim
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4846 - 4852
  • [5] Direct data-driven filter design for uncertain LTI systems with bounded noise
    Milanese, Mario
    Ruiz, Fredy
    Taragna, Michele
    [J]. AUTOMATICA, 2010, 46 (11) : 1773 - 1784
  • [6] Data-Driven Quadratic Stabilization of Continuous LTI Systems
    Dai, Tianyu
    Sznaier, Mario
    Solvas, Biel Roig
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 3965 - 3970
  • [7] A Data-Driven Approach of Fault Detection for LTI Systems
    Chen Zhaoxu
    Fang Huajing
    [J]. 2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 6174 - 6179
  • [8] Subspace Aided Data-Driven Fault Detection for LTI Systems
    Chen Jiao
    Fang Huajing
    Liu Xiaoyong
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 2758 - 2761
  • [9] On the Design of Persistently Exciting Inputs for Data-Driven Control of Linear and Nonlinear Systems
    Alsalti, Mohammad
    Lopez, Victor G.
    Muller, Matthias A.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2629 - 2634
  • [10] A Non-Iterative Approach to Direct Data-Driven Control Design of MIMO LTI Systems
    Abuabiah, Mohammad
    Cerone, Vito
    Pirrera, Simone
    Regruto, Diego
    [J]. IEEE ACCESS, 2023, 11 : 121671 - 121687