On the motion of the pendulum on an ellipse

被引:0
|
作者
El-Barki, FA [1 ]
Ismail, AI
Shaker, MO
Amer, TS
机构
[1] Tanta Univ, Fac Sci, Dept Math, Tanta, Egypt
[2] Univ Alexandria, Fac Engn, Alexandria, Egypt
来源
关键词
D O I
10.1002/(SICI)1521-4001(199901)79:1<65::AID-ZAMM65>3.0.CO;2-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present study, the motion of a pendulum on an ellipse is considered. The supported point of this pendulum moves on an elliptic path while the end point moves with arbitrary angular displacements. Applying Lagrange's equation, the equation, of motion, is obtained in terms of a small parameter epsilon. This equation represents a quasilinear system of second order which can be solved in terms of a generalized coordinate phi.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 50 条
  • [21] Ellipse Loss for Scene-Compliant Motion Prediction
    Cui, Henggang
    Shajari, Hoda
    Yalamanchi, Sai
    Djuric, Nemanja
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 8558 - 8564
  • [22] Inverted pendulum motion and the principle of equivalence
    Moloney, MJ
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (11) : 1431 - 1431
  • [23] CHAOTIC MOTION OF A PENDULUM WITH OSCILLATORY FORCING
    HASTINGS, SP
    MCLEOD, JB
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (06): : 563 - 572
  • [24] DETECTION OF VIOLATIONS OF THE LAW OF PENDULUM MOTION
    PITTENGER, JB
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1986, 24 (05) : 342 - 342
  • [25] A SIMPLE DESCRIPTION OF MOTION OF A SPHERICAL PENDULUM
    JOHANSEN, KF
    KANE, TR
    MECHANICAL ENGINEERING, 1969, 91 (11) : 74 - &
  • [26] Pendulum motion in airborne HEM systems
    Davis, Aaron C.
    Macnae, James
    Robb, Terry
    EXPLORATION GEOPHYSICS, 2006, 37 (04) : 355 - 362
  • [27] Experimental characterisation of the motion of an inverted pendulum
    Gomez-Tejedor, J. A.
    Mollar, M.
    Monsoriu, A.
    1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD'15), 2015, : 588 - 592
  • [28] On the irregularities of motion of the Foucault pendulum.
    Longden, AC
    PHYSICAL REVIEW, 1919, 13 (04): : 241 - 258
  • [29] Instability of the Maxwell’s Pendulum Motion
    G. M. Rozenblat
    Mechanics of Solids, 2018, 53 : 527 - 534
  • [30] Chaotic Motion of a Nonhomogeneous Torsional Pendulum
    Yeh, J.-P.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (03):