Powered Outer Probabilistic Clustering

被引:0
|
作者
Taraba, Peter
机构
关键词
clustering; probabilities; optimal number of clusters; binary valued features; emails;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering is one of the most important concepts for unsupervised learning in machine learning. While there are numerous clustering algorithms already, many, including the popular one k-means algorithm, require the number of clusters to be specified in advance, a huge drawback. Some studies use the silhouette coefficient to determine the optimal number of clusters. In this study, we introduce a novel algorithm called Powered Outer Probabilistic Clustering, show how it works through back-propagation (starting with many clusters and ending with an optimal number of clusters), and show that the algorithm converges to the expected (optimal) number of clusters on theoretical examples.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 50 条
  • [41] Clustering Algorithm Based on Probabilistic Dissimilarity
    Yamashiro, Makito
    Endo, Yasunori
    Hamasuna, Yukihiro
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 429 - 433
  • [42] Supervised and Unsupervised Clustering with Probabilistic Shift
    Shetty, Sanketh
    Ahuja, Narendra
    COMPUTER VISION-ECCV 2010, PT V, 2010, 6315 : 644 - 657
  • [43] Probabilistic Clustering by Random Swap Algorithm
    Franti, Pasi
    Virmajoki, Olli
    Hautamaki, Ville
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2400 - 2403
  • [44] Symbolic clustering of constrained probabilistic data
    Brito, P
    de Carvalho, FAT
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 12 - 21
  • [45] Noise-powered probabilistic concentration of phase information
    Usuga, Mario A.
    Mueller, Christian R.
    Wittmann, Christoffer
    Marek, Petr
    Filip, Radim
    Marquardt, Christoph
    Leuchs, Gerd
    Andersen, Ulrik L.
    NATURE PHYSICS, 2010, 6 (10) : 767 - 771
  • [46] Clustering of Mixed Data by Integrating Fuzzy, Probabilistic, and Collaborative Clustering Framework
    Arkanath Pathak
    Nikhil R. Pal
    International Journal of Fuzzy Systems, 2016, 18 : 339 - 348
  • [47] Clustering of Mixed Data by Integrating Fuzzy, Probabilistic, and Collaborative Clustering Framework
    Pathak, Arkanath
    Pal, Nikhil R.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2016, 18 (03) : 339 - 348
  • [48] Outer and Anti Joins in Temporal-Probabilistic Databases
    Papaioannou, Katerina
    Theobald, Martin
    Bohlen, Michael
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1742 - 1745
  • [49] Outer Median and Probabilistic Cellular Automata on Network Topologies
    Nussey, Abigail
    COMPLEX SYSTEMS, 2010, 18 (04): : 457 - 474
  • [50] Bidirectional Probabilistic Subspaces Approximation for Multiview Clustering
    Wu, Danyang
    Dong, Xia
    Cao, Jianfu
    Wang, Rong
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 8939 - 8953