Powered Outer Probabilistic Clustering

被引:0
|
作者
Taraba, Peter
机构
关键词
clustering; probabilities; optimal number of clusters; binary valued features; emails;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering is one of the most important concepts for unsupervised learning in machine learning. While there are numerous clustering algorithms already, many, including the popular one k-means algorithm, require the number of clusters to be specified in advance, a huge drawback. Some studies use the silhouette coefficient to determine the optimal number of clusters. In this study, we introduce a novel algorithm called Powered Outer Probabilistic Clustering, show how it works through back-propagation (starting with many clusters and ending with an optimal number of clusters), and show that the algorithm converges to the expected (optimal) number of clusters on theoretical examples.
引用
收藏
页码:394 / 398
页数:5
相关论文
共 50 条
  • [1] A PROBABILISTIC APPROACH TO CLUSTERING
    BRAILOVSKY, VL
    PATTERN RECOGNITION LETTERS, 1991, 12 (04) : 193 - 198
  • [2] Classification by probabilistic clustering
    Breuel, TM
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1333 - 1336
  • [3] Probabilistic Fair Clustering
    Esmaeili, Seyed A.
    Brubach, Brian
    Tsepenekas, Leonidas
    Dickerson, John P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] Scalable probabilistic clustering
    Bradley, PS
    Fayyad, UM
    Reina, CA
    COMPLEMENTARITY: APPLICATIONS, ALGORITHMS AND EXTENSIONS, 2001, 50 : 43 - 65
  • [5] A probabilistic theory of clustering
    Dougherty, ER
    Brun, M
    PATTERN RECOGNITION, 2004, 37 (05) : 917 - 925
  • [6] Probabilistic quantum clustering
    Casana-Eslava, Raul V.
    Lisboa, Paulo J. G.
    Ortega-Martorell, Sandra
    Jarman, Ian H.
    Martin-Guerrero, Jose D.
    KNOWLEDGE-BASED SYSTEMS, 2020, 194
  • [7] Penalized probabilistic clustering
    Lu, Zhengdong
    Leen, Todd K.
    NEURAL COMPUTATION, 2007, 19 (06) : 1528 - 1567
  • [8] Probabilistic Clustering of Wind Generators
    Ali, Muhammad
    Ilie, Irinel-Sorin
    Milanovic, Jovica V.
    Chicco, Gianfranco
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [9] Decentralized Probabilistic Text Clustering
    Papapetrou, Odysseas
    Siberski, Wolf
    Fuhr, Norbert
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (10) : 1848 - 1861
  • [10] Probabilistic clustering of interval data
    Brito, Paula
    Pedro Duarte Silva, A.
    Dias, Jose G.
    INTELLIGENT DATA ANALYSIS, 2015, 19 (02) : 293 - 313