Repairing large cracks and reversing fatigue damage in structural metals

被引:26
|
作者
Fisher, Charles R. [1 ]
Henderson, Hunter B. [2 ]
Kesler, Michael S. [2 ]
Zhu, Pingping [3 ]
Bean, Glenn E. [4 ]
Wright, M. Clara [5 ]
Newman, John A. [6 ]
Brinson, L. Catherine [7 ]
Figueroa, Oscar, III [8 ]
Manuel, Michele, V [8 ]
机构
[1] Naval Surface Warfare Ctr, Carderock Div, 9500 MacArthur Blvd West, Bethesda, MD 20817 USA
[2] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[3] Fiat Chrysler Automobiles, 800 Chrysler Dr, Auburn Hills, MI 48326 USA
[4] Aerosp Corp, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
[5] NASA, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA
[6] NASA, NASA Langley Res Ctr, 1 Nasa Dr, Hampton, VA 23666 USA
[7] Northwestern Univ, 2145 Sheridan Rd,Tech A214, Evanston, IL 60208 USA
[8] Univ Florida, 100 Rhines Hall,POB 116400, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Self-healing; Thermodynamics; Design; Metal-matrix composite; Shape-memory alloy; DESIGN;
D O I
10.1016/j.apmt.2018.07.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Self-healing materials represent a paradigm shift from traditional materials development, enabling intrinsic repair of functionality (such as strength) after a catastrophic failure as opposed to part replacement. Several healing mechanisms have been demonstrated in polymeric and ceramic materials, but few in metallic systems. This study demonstrates a novel liquid-assisted self-healing metal-matrix composite (MMC) designed to be capable of over 90% strength recovery after a healing cycle. The aluminum (A1)-based matrix is reinforced with continuous nickel-titanium (NiTi) shape-memory alloy (SMA) reinforcements. Using a tailored heat treatment for healing, a paired effect of crack closure from the SMA reinforcement and partial liquefaction of the matrix occurs. These effects result in a compressive force across the crack surface, and, coupled with increased diffusion rates from the liquefied matrix, produces consolidation and healing in the composite structure. This work provides experimental and computational evidence for the healing mechanism under both tensile and fatigue conditions. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [31] Stochastic modeling of fatigue damage processes in metals
    Dolinski, K
    ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE, VOLS I-III, 1996, : 43 - 52
  • [32] Estimation of Damage to the Collector of a Water Economizer by Thermal Fatigue Cracks
    R. Ya. Kosarevych
    O. Z. Student
    Ya. D. Onyshchak
    A. D. Markov
    I. V. Ripei
    V. P. Rusyn
    H. M. Nykyforchyn
    Materials Science, 2004, 40 : 132 - 138
  • [33] Acoustic emission monitoring of fatigue damage in metals
    Daniel, IM
    Luo, JJ
    Sifniotopoulos, CG
    Chun, HJ
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 16A AND 16B, 1997, 16 : 451 - 458
  • [34] Estimation of damage to the collector of a water economizer by thermal fatigue cracks
    Kosarevych, RY
    Student, OZ
    Onyshchak, YD
    Markov, AD
    Ripei, IV
    Rusyn, VP
    Nykyforchyn, HM
    MATERIALS SCIENCE, 2004, 40 (01) : 132 - 138
  • [35] Analysis of damage moments in the collective evolution of short fatigue cracks
    Hong, YS
    Qiao, Y
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 399 - 404
  • [36] Fatigue thresholds of cracks resulting from impact damage to γ-TiAl
    Harding, TS
    Jones, JW
    SCRIPTA MATERIALIA, 2000, 43 (07) : 623 - 629
  • [37] Research and application of repairing method for fatigue cracks in steel bridge diaphragm employing CFRP and SMA
    Qiang X.
    Wu Y.
    Jiang X.
    Liu Y.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2024, 45 (08): : 129 - 140
  • [38] A simple method of repairing fatigue cracks using stop-holes reinforced with wedge members
    Takahashi I.
    Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2019, 37 (01): : 81 - 97
  • [39] Perforated aluminum alloys as model for damage and cracks in cellular metals
    Öchsner, A
    Winter, W
    Kuhn, G
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2000, 31 (06) : 567 - 570
  • [40] CUMULATIVE DAMAGE ANALYSIS IN STRUCTURAL FATIGUE
    IMPELLIZ.LF
    MATERIALS RESEARCH AND STANDARDS, 1968, 8 (08): : 30 - &