Repairing large cracks and reversing fatigue damage in structural metals

被引:26
|
作者
Fisher, Charles R. [1 ]
Henderson, Hunter B. [2 ]
Kesler, Michael S. [2 ]
Zhu, Pingping [3 ]
Bean, Glenn E. [4 ]
Wright, M. Clara [5 ]
Newman, John A. [6 ]
Brinson, L. Catherine [7 ]
Figueroa, Oscar, III [8 ]
Manuel, Michele, V [8 ]
机构
[1] Naval Surface Warfare Ctr, Carderock Div, 9500 MacArthur Blvd West, Bethesda, MD 20817 USA
[2] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[3] Fiat Chrysler Automobiles, 800 Chrysler Dr, Auburn Hills, MI 48326 USA
[4] Aerosp Corp, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA
[5] NASA, John F Kennedy Space Ctr, Kennedy Space Ctr, FL 32899 USA
[6] NASA, NASA Langley Res Ctr, 1 Nasa Dr, Hampton, VA 23666 USA
[7] Northwestern Univ, 2145 Sheridan Rd,Tech A214, Evanston, IL 60208 USA
[8] Univ Florida, 100 Rhines Hall,POB 116400, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Self-healing; Thermodynamics; Design; Metal-matrix composite; Shape-memory alloy; DESIGN;
D O I
10.1016/j.apmt.2018.07.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Self-healing materials represent a paradigm shift from traditional materials development, enabling intrinsic repair of functionality (such as strength) after a catastrophic failure as opposed to part replacement. Several healing mechanisms have been demonstrated in polymeric and ceramic materials, but few in metallic systems. This study demonstrates a novel liquid-assisted self-healing metal-matrix composite (MMC) designed to be capable of over 90% strength recovery after a healing cycle. The aluminum (A1)-based matrix is reinforced with continuous nickel-titanium (NiTi) shape-memory alloy (SMA) reinforcements. Using a tailored heat treatment for healing, a paired effect of crack closure from the SMA reinforcement and partial liquefaction of the matrix occurs. These effects result in a compressive force across the crack surface, and, coupled with increased diffusion rates from the liquefied matrix, produces consolidation and healing in the composite structure. This work provides experimental and computational evidence for the healing mechanism under both tensile and fatigue conditions. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [1] Role of Small Cracks for Discussion of Fatigue Damage in Low Cycle Fatigue of Metals
    Murakami, Yukitaka
    Ferdous, Md. Shafiul
    Makabe, Chobin
    20TH EUROPEAN CONFERENCE ON FRACTURE, 2014, 3 : 1711 - 1716
  • [2] A theoretical analysis on stochastic behaviour of short cracks and fatigue damage of metals
    Qiao, Y
    Hong, YS
    ACTA MECHANICA SOLIDA SINICA, 1997, 10 (04): : 352 - 358
  • [3] The Development of Fatigue Cracks in Metals
    Rozumek, Dariusz
    EXPERIMENTAL MECHANICS OF SOLIDS, 2019, 12 : 124 - 130
  • [4] STRUCTURAL DAMAGE AND INTERNAL FATIGUE CRACKS IN A TITANIUM-COPPER ALLOY
    OCTOR, H
    RENON, C
    MARTINOD, H
    MEMOIRES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1976, 73 (12): : 781 - 790
  • [5] A study on parallel fatigue testing of multi cracks in a large structural model
    Bian, Ru-Gang
    Cui, Wei-Cheng
    Wan, Zheng-Quan
    Du, Qing-Hai
    Zhang, Ai-Feng
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2010, 14 (11): : 1249 - 1256
  • [6] SURFACE CRACKS AND THE FATIGUE LIMIT OF METALS
    TROSHCHENKO, VT
    PROKOPENKO, AV
    TORGOV, VN
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1988, 11 (02) : 123 - 138
  • [7] PROPAGATION OF FATIGUE CRACKS IN AMORPHOUS METALS
    OGURA, T
    FUKUSHIMA, K
    MASUMOTO, T
    MATERIALS SCIENCE AND ENGINEERING, 1976, 23 (2-3): : 231 - 235
  • [8] PROPAGATION OF FATIGUE CRACKS IN AMORPHOUS METALS
    OGURA, T
    FUKUSHIMA, K
    MASUMOTO, T
    SCRIPTA METALLURGICA, 1975, 9 (09): : 979 - 983
  • [9] Damage tolerance of FPSOs with fatigue cracks
    Bjorheim, LG
    Berge, S
    Skaret, H
    PROCEEDINGS OF THE FOURTEENTH (2004) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2004, : 600 - 607
  • [10] THEORY OF THE DISCRETE GROWTH OF FATIGUE CRACKS IN METALS
    SHANYAVSKII, AA
    RUSSIAN METALLURGY, 1984, (03): : 152 - 156