Sobolev inequalities for Musielak-Orlicz spaces

被引:10
|
作者
Mizuta, Yoshihiro [1 ]
Ohno, Takao [2 ]
Shimomura, Tetsu [3 ]
机构
[1] 4-13-11 Hachi Hon Matsu Minami, Higashihiroshima 7390144, Japan
[2] Oita Univ, Fac Educ, Dannoharu Oita City 8701192, Japan
[3] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
VARIABLE EXPONENT; GENERALIZED LEBESGUE; RIESZ-POTENTIALS; MAXIMAL OPERATOR; EMBEDDINGS; THEOREM;
D O I
10.1007/s00229-017-0944-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to deal with Sobolev's embeddings for Musielak-Orlicz-Sobolev functions in for , as extensions of Harjulehto and Hasto (Publ Mat 52:347-363, 2008), Hasto (Math Res Lett 16(2):263-278, 2009) and Hasto et al. (Glasg Math J 52:227-240, 2010). Here is a function such that is uniformly almost increasing positive function of .
引用
收藏
页码:209 / 227
页数:19
相关论文
共 50 条
  • [21] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898
  • [22] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [23] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [24] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 : 1567 - 1584
  • [25] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [26] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [27] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041
  • [28] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 (08) : 1567 - 1584
  • [29] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [30] ISOMETRIES OF MUSIELAK-ORLICZ SPACES EQUIPPED WITH THE ORLICZ NORM
    KAMINSKA, A
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1475 - 1486