CNN-Based Automatic Modulation Classification for Beyond 5G Communications

被引:111
|
作者
Hermawan, Ade Pitra [1 ]
Ginanjar, Rizki Rivai [1 ]
Kim, Dong-Seong [1 ]
Lee, Jae-Min [1 ]
机构
[1] Kumoh Natl Inst Technol, Sch Elect Engn, Dept IT Convergence Engn, Gumi 39177, South Korea
基金
新加坡国家研究基金会;
关键词
Modulation; Convolution; Classification algorithms; Computer architecture; Signal to noise ratio; 5G mobile communication; Receivers; Automatic modulation classification; beyond fifth generation (B5G); convolutional neural network (CNN); NETWORK;
D O I
10.1109/LCOMM.2020.2970922
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we propose an improved convolutional neural network (CNN)-based automatic modulation classification network (IC-AMCNet), an algorithm to classify the modulation type of a wireless signal. Since adaptive coding and modulation is widely used in wireless communication, high accuracy and short computing time of classifier is needed. Compared with the existing CNN architectures, we adjusted the number of layers and added new type of layers to comply with the estimated latency standards in beyond fifth-generation (B5G) communications. According to the simulation results, the proposed scheme significantly outperforms the previous works in terms of both classification accuracy and computing time.
引用
收藏
页码:1038 / 1041
页数:4
相关论文
共 50 条
  • [21] Application of CNN-Based Method for Automatic Detection and Classification of the IC Packages
    Malinski, Kamil Marek
    Okarma, Krzysztof
    [J]. 16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 944 - 950
  • [22] A Novel CNN-based Architecture for Over-the-Air 5G OFDM Channel Estimation
    Coutinho, Fabio D. L.
    Silva, Hugerles S.
    Georgieva, Petia
    Oliveira, Arnaldo S. R.
    [J]. 2024 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, IMS 2024, 2024, : 98 - 101
  • [23] A CNN-based automatic vulnerability detection
    Jung Hyun An
    Zhan Wang
    Inwhee Joe
    [J]. EURASIP Journal on Wireless Communications and Networking, 2023
  • [24] Editorial: Wireless Communications and Networks for 5G and Beyond
    Trung Q. Duong
    Nguyen-Son Vo
    [J]. Mobile Networks and Applications, 2019, 24 : 443 - 446
  • [25] Editorial: Wireless Communications and Networks for 5G and Beyond
    Duong, Trung Q.
    Nguyen-Son Vo
    [J]. MOBILE NETWORKS & APPLICATIONS, 2019, 24 (02): : 443 - 446
  • [26] A CNN-based automatic vulnerability detection
    An, Jung Hyun
    Wang, Zhan
    Joe, Inwhee
    [J]. EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [27] NOMA-Based Statistical Signal Transmission for Beyond 5G Communications
    Xu, Tianheng
    Zhang, Ning
    Zhou, Ting
    Hu, Honglin
    Tao, Xiaoming
    [J]. MOBILE NETWORKS AND MANAGEMENT, MONAMI 2021, 2022, 418 : 282 - 298
  • [28] Enhanced Remote Areas Communications: The Missing Scenario for 5G and Beyond 5G Networks
    Mendes, Luciano Leonel
    Moreno, Carlos Salle
    Marquezini, Maria Valeria
    Cavalcante, Andre Mendes
    Neuhaus, Peter
    Seki, Jorge
    Aniceto, Nathalia Figueiredo Tinoco
    Karvonen, Heikki
    Vidal, Ivan
    Valera, Francisco
    Barreto, Priscila America Solis Mendez
    Caetano, Marcos Fagundes
    Dias, Wheberth Damascena
    Fettweis, Gerhard
    [J]. IEEE ACCESS, 2020, 8 : 219859 - 219880
  • [29] CNN-based InSAR Coherence Classification
    Mukherjee, Subhayan
    Zimmer, Aaron
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    [J]. 2018 IEEE SENSORS, 2018, : 1612 - 1615
  • [30] SCALED SIAMESE CNN-BASED AUTOMATIC CLASSIFICATION ALGORITHM FOR DETECTING PULMONARY EMBOLISM
    Sekhar, Ambika
    Suresh, L. Padma
    [J]. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024,