Statistics of toppling wave boundaries in deterministic and stochastic sandpile models

被引:0
|
作者
Dashti-Naserabadi, H. [1 ]
Azimi-Tafreshi, N. [2 ]
Moghimi-Araghi, S. [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
关键词
TANG-WIESENFELD SANDPILE; ERASED RANDOM-WALKS; CONFORMAL-INVARIANCE; CRITICAL EXPONENTS; UNIVERSALITY; PERCOLATION; SLE;
D O I
10.1088/1751-8113/45/4/045001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically the statistics of curves which form the boundaries of toppling wave clusters in the deterministic Bak, Tang and Wiesenfeld sandpile model and stochastic Manna model on a square lattice. We consider the Abelian version of each model. Multiple tests show that the boundary of toppling wave clusters in both deterministic and stochastic models can be described by SLE kappa curves with diffusivity kappa = 2.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Integrability of a deterministic cellular automaton driven by stochastic boundaries
    Prosen, Tomaz
    Mejia-Monasterio, Carlos
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (18)
  • [22] COMPLETELY DETERMINISTIC SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS
    CHAU, HF
    CHENG, KS
    PHYSICS LETTERS A, 1991, 157 (2-3) : 103 - 106
  • [23] DETERMINISTIC AND STOCHASTIC MODELS FOR THE SPREAD OF CHOLERA
    Gani, J.
    Swift, R. J.
    ANZIAM JOURNAL, 2009, 51 (02): : 234 - 240
  • [24] Connecting deterministic and stochastic metapopulation models
    A. D. Barbour
    R. McVinish
    P. K. Pollett
    Journal of Mathematical Biology, 2015, 71 : 1481 - 1504
  • [25] Deterministic approximation of stochastic metapoplation models
    Arrigoni, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4A (03): : 387 - 390
  • [26] Deterministic and stochastic models for circadian rhythms
    Gonze, D
    Halloy, J
    Goldbeter, A
    PATHOLOGIE BIOLOGIE, 2003, 51 (04): : 227 - 230
  • [27] On the deterministic and stochastic use of hydrologic models
    Farmer, William H.
    Vogel, Richard M.
    WATER RESOURCES RESEARCH, 2016, 52 (07) : 5619 - 5633
  • [28] Stochastic and deterministic interpretation of pool models
    Azizi-Rad, Mina
    Chanca, Ingrid
    Herrera-Ramirez, David
    Metzler, Holger
    Sierra, Carlos A.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (11) : 2271 - 2272
  • [29] Connecting deterministic and stochastic metapopulation models
    Barbour, A. D.
    McVinish, R.
    Pollett, P. K.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (6-7) : 1481 - 1504
  • [30] The Comparison of Stochastic and Deterministic DEA Models
    Houda, Michal
    Klicnarova, Jana
    PROCEEDINGS OF THE 9TH INTERNATIONAL SCIENTIFIC CONFERENCE INPROFORUM: COMMON CHALLENGES - DIFFERENT SOLUTIONS - MUTUAL DIALOGUE, 2015, : 140 - 145