Evaluation of organosolv pretreatment for the conversion of Pinus radiata D.!Don to ethanol

被引:129
|
作者
Araque, Edgardo [1 ]
Parra, Carolina [1 ]
Freer, Juanita [1 ,2 ]
Contreras, David [2 ]
Rodriguez, Jaime [1 ,3 ]
Mendonca, Regis [1 ,3 ]
Baeza, Jaime [1 ,2 ]
机构
[1] Univ Concepcion, Ctr Biotechnol, Renewable Resources Lab, Concepcion, Chile
[2] Univ Concepcion, Fac Chem Sci, Concepcion, Chile
[3] Univ Concepcion, Fac Forestry Sci, Concepcion, Chile
关键词
bioethanol; Pinus radiata D. Don; enzymatic hydrolysis; simultaneous saccharification and fermentation (SSF); organosolv pretreatment;
D O I
10.1016/j.enzmictec.2007.08.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ethanol derived from biomass has the potential to be a renewable transportation fuel that can replace gasoline. The demand for oxygenated fuels is increasing rapidly. The use of bioethanol can save non-renewable energy consumption and reduce greenhouse emissions. The largest feedstock for ethanol is lignocellulosic biomass. Cellulose is intrinsically resistant to enzymatic attack, and is further protected by the surrounding matrix of lignin and hemicelluloses. Therefore, lignocellulosic materials must be pretreated to make the cellulose more accessible to hydrolysis. In this work, the organosolv acetone-water pretreatment conditions for Pinus radiata D. Don chips were optimized to obtain higher ethanol yield. An organosolv pretreated material produced at 195 degrees C, 5 min, pH 2.0 and acetone:water 1: 1 of ratio resulted in 99.5% of ethanol yield. Under these conditions, the experimental H-factor was close to 2800. (C) 2007 Published by Elsevier Inc.
引用
收藏
页码:214 / 219
页数:6
相关论文
共 50 条
  • [1] Organosolv pretreatment of Pinus radiata D. Don for enzymatic hydrolysis and simultaneous saccharification and fermentation to obtain bioethanol from wood
    Araque, E.
    Parra, C.
    Freer, J.
    Mendonca, R.
    Baeza, J.
    [J]. NEW BIOTECHNOLOGY, 2009, 25 : S274 - S275
  • [2] Evaluation of AFLP for genetic mapping in Pinus radiata D. Don
    S.A. Cato
    G.E. Corbett
    T.E. Richardson
    [J]. Molecular Breeding, 1999, 5 : 275 - 281
  • [3] Investigation on hydrothermal treatment of Pinus radiata D. Don
    Poblete, H
    Niemz, P
    Baechle, F
    Schanack, F
    [J]. WOOD RESEARCH, 2005, 50 (01): : 33 - 41
  • [4] The mechanosorptive effect in Pinus radiata d. Don.
    Entwistle, KM
    [J]. HOLZFORSCHUNG, 2005, 59 (05) : 552 - 558
  • [5] Hydrothermal time germination models for radiata pine (Pinus radiata D. Don)
    Bloomberg, M.
    Sedcole, J. R.
    Mason, E. G.
    Buchan, G.
    [J]. SEED SCIENCE RESEARCH, 2009, 19 (03) : 171 - 182
  • [6] Xylogenesis of Pinus radiata D. Don growing in New Zealand
    Nanayakkara, Bernadette
    Dickson, Alan R.
    Meason, Dean F.
    [J]. ANNALS OF FOREST SCIENCE, 2019, 76 (03)
  • [7] An allele responsible for seedling death in Pinus radiata D. Don
    H. Kuang
    T. E. Richardson
    S. D. Carson
    B. C. Bongarten
    [J]. Theoretical and Applied Genetics, 1998, 96 : 640 - 644
  • [8] Xylogenesis of Pinus radiata D. Don growing in New Zealand
    Bernadette Nanayakkara
    Alan R. Dickson
    Dean F. Meason
    [J]. Annals of Forest Science, 2019, 76
  • [9] Factors involved in Pinus radiata D. Don. micrografting
    Fraga, MF
    Cañal, MJ
    Aragonés, A
    Rodríguez, R
    [J]. ANNALS OF FOREST SCIENCE, 2002, 59 (02) : 155 - 161
  • [10] Effect of the Longitudinal Tensile Creep on the Stiffness of Radiata Pine (Pinus radiata D. Don)
    Erazo, Oswaldo
    Vergara-Figueroa, Judith
    Valenzuela, Paulina
    Gacitua, William
    [J]. MATERIALS, 2022, 15 (12)