共 50 条
Invariants of wreath products and subgroups of S6
被引:5
|作者:
Kang, Ming-chang
[1
]
Wang, Baoshan
[2
]
Zhou, Jian
[3
]
机构:
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词:
NOETHERS PROBLEM;
GENERIC POLYNOMIALS;
RATIONALITY PROBLEM;
FINITE;
D O I:
10.1215/21562261-2871749
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a subgroup of S-6, the symmetric group of degree 6. For any field k, G acts naturally on the rational function field k(x(1),...,x(6)) via k-automorphisms defined by sigma center dot x(i) = x(sigma(i)) for any sigma is an element of G and any 1 <= i <= 6. We prove the following theorem. The fixed field k(x(1),..., x(6))(G) is rational (i.e., purely transcendental) over k, except possibly when G is isomorphic to PSL2 (F-5), PGL(2) (F-5), or A(6). When G is isomorphic to PSL2 (F-5) or PGL(2) (F-5), then C(x(1),...,x(6))(G) is C-rational and k(x(1),...,x(6))(G) is stably k-rational for any field k. The invariant theory of wreath products will be investigated also.
引用
收藏
页码:257 / 279
页数:23
相关论文